Copied to
clipboard

G = C6.D6order 72 = 23·32

2nd non-split extension by C6 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, A-group

Aliases: C6.2D6, Dic3oDic3, Dic3:2S3, C2.2S32, C3:S3:1C4, C3:1(C4xS3), C32:3(C2xC4), (C3xDic3):3C2, (C3xC6).2C22, (C2xC3:S3).1C2, SmallGroup(72,21)

Series: Derived Chief Lower central Upper central

C1C32 — C6.D6
C1C3C32C3xC6C3xDic3 — C6.D6
C32 — C6.D6
C1C2

Generators and relations for C6.D6
 G = < a,b,c | a6=c2=1, b6=a3, bab-1=cac=a-1, cbc=b5 >

Subgroups: 110 in 37 conjugacy classes, 16 normal (6 characteristic)
Quotients: C1, C2, C4, C22, S3, C2xC4, D6, C4xS3, S32, C6.D6
9C2
9C2
2C3
3C4
3C4
9C22
2C6
3S3
3S3
3S3
3S3
6S3
6S3
9C2xC4
3D6
3C12
3D6
3C12
6D6
3C4xS3
3C4xS3

Character table of C6.D6

 class 12A2B2C3A3B3C4A4B4C4D6A6B6C12A12B12C12D
 size 119922433332246666
ρ1111111111111111111    trivial
ρ211-1-11111-1-11111-11-11    linear of order 2
ρ311-1-1111-111-11111-11-1    linear of order 2
ρ41111111-1-1-1-1111-1-1-1-1    linear of order 2
ρ51-11-1111-ii-ii-1-1-1-i-iii    linear of order 4
ρ61-1-11111-i-iii-1-1-1i-i-ii    linear of order 4
ρ71-11-1111i-ii-i-1-1-1ii-i-i    linear of order 4
ρ81-1-11111ii-i-i-1-1-1-iii-i    linear of order 4
ρ92200-12-10-2-202-1-11010    orthogonal lifted from D6
ρ1022002-1-1-200-2-12-10101    orthogonal lifted from D6
ρ1122002-1-12002-12-10-10-1    orthogonal lifted from S3
ρ122200-12-102202-1-1-10-10    orthogonal lifted from S3
ρ132-2002-1-12i00-2i1-210-i0i    complex lifted from C4xS3
ρ142-2002-1-1-2i002i1-210i0-i    complex lifted from C4xS3
ρ152-200-12-102i-2i0-211i0-i0    complex lifted from C4xS3
ρ162-200-12-10-2i2i0-211-i0i0    complex lifted from C4xS3
ρ174400-2-210000-2-210000    orthogonal lifted from S32
ρ184-400-2-21000022-10000    orthogonal faithful

Permutation representations of C6.D6
On 12 points - transitive group 12T39
Generators in S12
(1 3 5 7 9 11)(2 12 10 8 6 4)
(1 2 3 4 5 6 7 8 9 10 11 12)
(1 9)(3 7)(4 12)(6 10)

G:=sub<Sym(12)| (1,3,5,7,9,11)(2,12,10,8,6,4), (1,2,3,4,5,6,7,8,9,10,11,12), (1,9)(3,7)(4,12)(6,10)>;

G:=Group( (1,3,5,7,9,11)(2,12,10,8,6,4), (1,2,3,4,5,6,7,8,9,10,11,12), (1,9)(3,7)(4,12)(6,10) );

G=PermutationGroup([[(1,3,5,7,9,11),(2,12,10,8,6,4)], [(1,2,3,4,5,6,7,8,9,10,11,12)], [(1,9),(3,7),(4,12),(6,10)]])

G:=TransitiveGroup(12,39);

On 24 points - transitive group 24T75
Generators in S24
(1 3 5 7 9 11)(2 12 10 8 6 4)(13 23 21 19 17 15)(14 16 18 20 22 24)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 24)(2 17)(3 22)(4 15)(5 20)(6 13)(7 18)(8 23)(9 16)(10 21)(11 14)(12 19)

G:=sub<Sym(24)| (1,3,5,7,9,11)(2,12,10,8,6,4)(13,23,21,19,17,15)(14,16,18,20,22,24), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,24)(2,17)(3,22)(4,15)(5,20)(6,13)(7,18)(8,23)(9,16)(10,21)(11,14)(12,19)>;

G:=Group( (1,3,5,7,9,11)(2,12,10,8,6,4)(13,23,21,19,17,15)(14,16,18,20,22,24), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,24)(2,17)(3,22)(4,15)(5,20)(6,13)(7,18)(8,23)(9,16)(10,21)(11,14)(12,19) );

G=PermutationGroup([[(1,3,5,7,9,11),(2,12,10,8,6,4),(13,23,21,19,17,15),(14,16,18,20,22,24)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,24),(2,17),(3,22),(4,15),(5,20),(6,13),(7,18),(8,23),(9,16),(10,21),(11,14),(12,19)]])

G:=TransitiveGroup(24,75);

C6.D6 is a maximal subgroup of
S32:C4  C3:S3.Q8  Dic3.D6  D6.6D6  C4xS32  D6.3D6  Dic3:D6  C18.D6  C6.S32  C33:8(C2xC4)  C33:9(C2xC4)  Dic3.5S4  Dic3:2S4  C6.D30  Dic15:S3  C3:F5:S3
C6.D6 is a maximal quotient of
C12.29D6  C12.31D6  Dic32  C6.D12  C62.C22  C18.D6  He3:(C2xC4)  C33:8(C2xC4)  C33:9(C2xC4)  Dic3:2S4  C6.D30  Dic15:S3  C3:F5:S3

Polynomial with Galois group C6.D6 over Q
actionf(x)Disc(f)
12T39x12-8x10+24x8-32x6+17x4-8x2+8241·74·234

Matrix representation of C6.D6 in GL4(Z) generated by

1100
-1000
0011
00-10
,
00-1-1
0001
0-100
-1000
,
0-100
-1000
0011
000-1
G:=sub<GL(4,Integers())| [1,-1,0,0,1,0,0,0,0,0,1,-1,0,0,1,0],[0,0,0,-1,0,0,-1,0,-1,0,0,0,-1,1,0,0],[0,-1,0,0,-1,0,0,0,0,0,1,0,0,0,1,-1] >;

C6.D6 in GAP, Magma, Sage, TeX

C_6.D_6
% in TeX

G:=Group("C6.D6");
// GroupNames label

G:=SmallGroup(72,21);
// by ID

G=gap.SmallGroup(72,21);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-3,20,26,168,1204]);
// Polycyclic

G:=Group<a,b,c|a^6=c^2=1,b^6=a^3,b*a*b^-1=c*a*c=a^-1,c*b*c=b^5>;
// generators/relations

Export

Subgroup lattice of C6.D6 in TeX
Character table of C6.D6 in TeX

׿
x
:
Z
F
o
wr
Q
<