Extensions 1→N→G→Q→1 with N=C3 and Q=C6×SL2(𝔽3)

Direct product G=N×Q with N=C3 and Q=C6×SL2(𝔽3)
dρLabelID
C3×C6×SL2(𝔽3)144C3xC6xSL(2,3)432,698

Semidirect products G=N:Q with N=C3 and Q=C6×SL2(𝔽3)
extensionφ:Q→Aut NdρLabelID
C3⋊(C6×SL2(𝔽3)) = C3×S3×SL2(𝔽3)φ: C6×SL2(𝔽3)/C3×SL2(𝔽3)C2 ⊆ Aut C3484C3:(C6xSL(2,3))432,623

Non-split extensions G=N.Q with N=C3 and Q=C6×SL2(𝔽3)
extensionφ:Q→Aut NdρLabelID
C3.1(C6×SL2(𝔽3)) = C18×SL2(𝔽3)central extension (φ=1)144C3.1(C6xSL(2,3))432,327
C3.2(C6×SL2(𝔽3)) = C6×Q8⋊C9central extension (φ=1)432C3.2(C6xSL(2,3))432,334
C3.3(C6×SL2(𝔽3)) = C2×C18.A4central stem extension (φ=1)144C3.3(C6xSL(2,3))432,328
C3.4(C6×SL2(𝔽3)) = C2×Q8⋊3- 1+2central stem extension (φ=1)144C3.4(C6xSL(2,3))432,335
C3.5(C6×SL2(𝔽3)) = C2×Q8⋊He3central stem extension (φ=1)144C3.5(C6xSL(2,3))432,336

׿
×
𝔽