Copied to
clipboard

G = C2×Q8⋊3- 1+2order 432 = 24·33

Direct product of C2 and Q8⋊3- 1+2

direct product, non-abelian, soluble

Aliases: C2×Q8⋊3- 1+2, C62.4A4, Q8⋊C93C6, C6.23(C6×A4), (C3×C6).SL2(𝔽3), (C6×Q8).4C32, (C2×Q8)⋊23- 1+2, (Q8×C32).11C6, C6.4(C3×SL2(𝔽3)), C3.4(C6×SL2(𝔽3)), C32.(C2×SL2(𝔽3)), Q82(C2×3- 1+2), C22.2(C32.A4), (C2×Q8⋊C9)⋊2C3, (Q8×C3×C6).2C3, (C3×C6).6(C2×A4), (C2×C6).20(C3×A4), (C3×Q8).7(C3×C6), C2.2(C2×C32.A4), SmallGroup(432,335)

Series: Derived Chief Lower central Upper central

C1C2C3×Q8 — C2×Q8⋊3- 1+2
C1C2Q8C3×Q8Q8×C32Q8⋊3- 1+2 — C2×Q8⋊3- 1+2
Q8C3×Q8 — C2×Q8⋊3- 1+2
C1C2×C6C62

Generators and relations for C2×Q8⋊3- 1+2
 G = < a,b,c,d,e | a2=b4=d9=e3=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, dbd-1=c, be=eb, dcd-1=bc, ce=ec, ede-1=d4 >

Subgroups: 202 in 80 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2×C4, Q8, Q8, C9, C32, C12, C2×C6, C2×C6, C2×Q8, C18, C3×C6, C3×C6, C2×C12, C3×Q8, C3×Q8, 3- 1+2, C2×C18, C3×C12, C62, C6×Q8, C6×Q8, C2×3- 1+2, Q8⋊C9, C6×C12, Q8×C32, Q8×C32, C22×3- 1+2, C2×Q8⋊C9, Q8×C3×C6, Q8⋊3- 1+2, C2×Q8⋊3- 1+2
Quotients: C1, C2, C3, C6, C32, A4, C3×C6, SL2(𝔽3), C2×A4, 3- 1+2, C3×A4, C2×SL2(𝔽3), C2×3- 1+2, C3×SL2(𝔽3), C6×A4, C32.A4, C6×SL2(𝔽3), Q8⋊3- 1+2, C2×C32.A4, C2×Q8⋊3- 1+2

Smallest permutation representation of C2×Q8⋊3- 1+2
On 144 points
Generators in S144
(1 138)(2 139)(3 140)(4 141)(5 142)(6 143)(7 144)(8 136)(9 137)(10 73)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 81)(19 99)(20 91)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 132)(29 133)(30 134)(31 135)(32 127)(33 128)(34 129)(35 130)(36 131)(37 84)(38 85)(39 86)(40 87)(41 88)(42 89)(43 90)(44 82)(45 83)(46 109)(47 110)(48 111)(49 112)(50 113)(51 114)(52 115)(53 116)(54 117)(55 118)(56 119)(57 120)(58 121)(59 122)(60 123)(61 124)(62 125)(63 126)(64 103)(65 104)(66 105)(67 106)(68 107)(69 108)(70 100)(71 101)(72 102)
(1 98 101 117)(2 73 102 133)(3 88 103 121)(4 92 104 111)(5 76 105 127)(6 82 106 124)(7 95 107 114)(8 79 108 130)(9 85 100 118)(10 72 29 139)(11 20 30 47)(12 59 31 42)(13 66 32 142)(14 23 33 50)(15 62 34 45)(16 69 35 136)(17 26 36 53)(18 56 28 39)(19 40 46 57)(21 65 48 141)(22 43 49 60)(24 68 51 144)(25 37 52 63)(27 71 54 138)(38 70 55 137)(41 64 58 140)(44 67 61 143)(74 91 134 110)(75 122 135 89)(77 94 128 113)(78 125 129 83)(80 97 131 116)(81 119 132 86)(84 115 126 96)(87 109 120 99)(90 112 123 93)
(1 81 101 132)(2 87 102 120)(3 91 103 110)(4 75 104 135)(5 90 105 123)(6 94 106 113)(7 78 107 129)(8 84 108 126)(9 97 100 116)(10 19 29 46)(11 58 30 41)(12 65 31 141)(13 22 32 49)(14 61 33 44)(15 68 34 144)(16 25 35 52)(17 55 36 38)(18 71 28 138)(20 64 47 140)(21 42 48 59)(23 67 50 143)(24 45 51 62)(26 70 53 137)(27 39 54 56)(37 69 63 136)(40 72 57 139)(43 66 60 142)(73 99 133 109)(74 121 134 88)(76 93 127 112)(77 124 128 82)(79 96 130 115)(80 118 131 85)(83 114 125 95)(86 117 119 98)(89 111 122 92)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(2 8 5)(3 6 9)(10 16 13)(11 14 17)(19 25 22)(20 23 26)(29 35 32)(30 33 36)(37 43 40)(38 41 44)(46 52 49)(47 50 53)(55 58 61)(57 63 60)(64 67 70)(66 72 69)(73 79 76)(74 77 80)(82 85 88)(84 90 87)(91 94 97)(93 99 96)(100 103 106)(102 108 105)(109 115 112)(110 113 116)(118 121 124)(120 126 123)(127 133 130)(128 131 134)(136 142 139)(137 140 143)

G:=sub<Sym(144)| (1,138)(2,139)(3,140)(4,141)(5,142)(6,143)(7,144)(8,136)(9,137)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,99)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,132)(29,133)(30,134)(31,135)(32,127)(33,128)(34,129)(35,130)(36,131)(37,84)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,82)(45,83)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,100)(71,101)(72,102), (1,98,101,117)(2,73,102,133)(3,88,103,121)(4,92,104,111)(5,76,105,127)(6,82,106,124)(7,95,107,114)(8,79,108,130)(9,85,100,118)(10,72,29,139)(11,20,30,47)(12,59,31,42)(13,66,32,142)(14,23,33,50)(15,62,34,45)(16,69,35,136)(17,26,36,53)(18,56,28,39)(19,40,46,57)(21,65,48,141)(22,43,49,60)(24,68,51,144)(25,37,52,63)(27,71,54,138)(38,70,55,137)(41,64,58,140)(44,67,61,143)(74,91,134,110)(75,122,135,89)(77,94,128,113)(78,125,129,83)(80,97,131,116)(81,119,132,86)(84,115,126,96)(87,109,120,99)(90,112,123,93), (1,81,101,132)(2,87,102,120)(3,91,103,110)(4,75,104,135)(5,90,105,123)(6,94,106,113)(7,78,107,129)(8,84,108,126)(9,97,100,116)(10,19,29,46)(11,58,30,41)(12,65,31,141)(13,22,32,49)(14,61,33,44)(15,68,34,144)(16,25,35,52)(17,55,36,38)(18,71,28,138)(20,64,47,140)(21,42,48,59)(23,67,50,143)(24,45,51,62)(26,70,53,137)(27,39,54,56)(37,69,63,136)(40,72,57,139)(43,66,60,142)(73,99,133,109)(74,121,134,88)(76,93,127,112)(77,124,128,82)(79,96,130,115)(80,118,131,85)(83,114,125,95)(86,117,119,98)(89,111,122,92), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36)(37,43,40)(38,41,44)(46,52,49)(47,50,53)(55,58,61)(57,63,60)(64,67,70)(66,72,69)(73,79,76)(74,77,80)(82,85,88)(84,90,87)(91,94,97)(93,99,96)(100,103,106)(102,108,105)(109,115,112)(110,113,116)(118,121,124)(120,126,123)(127,133,130)(128,131,134)(136,142,139)(137,140,143)>;

G:=Group( (1,138)(2,139)(3,140)(4,141)(5,142)(6,143)(7,144)(8,136)(9,137)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,81)(19,99)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,132)(29,133)(30,134)(31,135)(32,127)(33,128)(34,129)(35,130)(36,131)(37,84)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,82)(45,83)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,121)(59,122)(60,123)(61,124)(62,125)(63,126)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,100)(71,101)(72,102), (1,98,101,117)(2,73,102,133)(3,88,103,121)(4,92,104,111)(5,76,105,127)(6,82,106,124)(7,95,107,114)(8,79,108,130)(9,85,100,118)(10,72,29,139)(11,20,30,47)(12,59,31,42)(13,66,32,142)(14,23,33,50)(15,62,34,45)(16,69,35,136)(17,26,36,53)(18,56,28,39)(19,40,46,57)(21,65,48,141)(22,43,49,60)(24,68,51,144)(25,37,52,63)(27,71,54,138)(38,70,55,137)(41,64,58,140)(44,67,61,143)(74,91,134,110)(75,122,135,89)(77,94,128,113)(78,125,129,83)(80,97,131,116)(81,119,132,86)(84,115,126,96)(87,109,120,99)(90,112,123,93), (1,81,101,132)(2,87,102,120)(3,91,103,110)(4,75,104,135)(5,90,105,123)(6,94,106,113)(7,78,107,129)(8,84,108,126)(9,97,100,116)(10,19,29,46)(11,58,30,41)(12,65,31,141)(13,22,32,49)(14,61,33,44)(15,68,34,144)(16,25,35,52)(17,55,36,38)(18,71,28,138)(20,64,47,140)(21,42,48,59)(23,67,50,143)(24,45,51,62)(26,70,53,137)(27,39,54,56)(37,69,63,136)(40,72,57,139)(43,66,60,142)(73,99,133,109)(74,121,134,88)(76,93,127,112)(77,124,128,82)(79,96,130,115)(80,118,131,85)(83,114,125,95)(86,117,119,98)(89,111,122,92), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36)(37,43,40)(38,41,44)(46,52,49)(47,50,53)(55,58,61)(57,63,60)(64,67,70)(66,72,69)(73,79,76)(74,77,80)(82,85,88)(84,90,87)(91,94,97)(93,99,96)(100,103,106)(102,108,105)(109,115,112)(110,113,116)(118,121,124)(120,126,123)(127,133,130)(128,131,134)(136,142,139)(137,140,143) );

G=PermutationGroup([[(1,138),(2,139),(3,140),(4,141),(5,142),(6,143),(7,144),(8,136),(9,137),(10,73),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,81),(19,99),(20,91),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,132),(29,133),(30,134),(31,135),(32,127),(33,128),(34,129),(35,130),(36,131),(37,84),(38,85),(39,86),(40,87),(41,88),(42,89),(43,90),(44,82),(45,83),(46,109),(47,110),(48,111),(49,112),(50,113),(51,114),(52,115),(53,116),(54,117),(55,118),(56,119),(57,120),(58,121),(59,122),(60,123),(61,124),(62,125),(63,126),(64,103),(65,104),(66,105),(67,106),(68,107),(69,108),(70,100),(71,101),(72,102)], [(1,98,101,117),(2,73,102,133),(3,88,103,121),(4,92,104,111),(5,76,105,127),(6,82,106,124),(7,95,107,114),(8,79,108,130),(9,85,100,118),(10,72,29,139),(11,20,30,47),(12,59,31,42),(13,66,32,142),(14,23,33,50),(15,62,34,45),(16,69,35,136),(17,26,36,53),(18,56,28,39),(19,40,46,57),(21,65,48,141),(22,43,49,60),(24,68,51,144),(25,37,52,63),(27,71,54,138),(38,70,55,137),(41,64,58,140),(44,67,61,143),(74,91,134,110),(75,122,135,89),(77,94,128,113),(78,125,129,83),(80,97,131,116),(81,119,132,86),(84,115,126,96),(87,109,120,99),(90,112,123,93)], [(1,81,101,132),(2,87,102,120),(3,91,103,110),(4,75,104,135),(5,90,105,123),(6,94,106,113),(7,78,107,129),(8,84,108,126),(9,97,100,116),(10,19,29,46),(11,58,30,41),(12,65,31,141),(13,22,32,49),(14,61,33,44),(15,68,34,144),(16,25,35,52),(17,55,36,38),(18,71,28,138),(20,64,47,140),(21,42,48,59),(23,67,50,143),(24,45,51,62),(26,70,53,137),(27,39,54,56),(37,69,63,136),(40,72,57,139),(43,66,60,142),(73,99,133,109),(74,121,134,88),(76,93,127,112),(77,124,128,82),(79,96,130,115),(80,118,131,85),(83,114,125,95),(86,117,119,98),(89,111,122,92)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(2,8,5),(3,6,9),(10,16,13),(11,14,17),(19,25,22),(20,23,26),(29,35,32),(30,33,36),(37,43,40),(38,41,44),(46,52,49),(47,50,53),(55,58,61),(57,63,60),(64,67,70),(66,72,69),(73,79,76),(74,77,80),(82,85,88),(84,90,87),(91,94,97),(93,99,96),(100,103,106),(102,108,105),(109,115,112),(110,113,116),(118,121,124),(120,126,123),(127,133,130),(128,131,134),(136,142,139),(137,140,143)]])

62 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B6A···6F6G···6L9A···9F12A···12P18A···18R
order12223333446···66···69···912···1218···18
size11111133661···13···312···126···612···12

62 irreducible representations

dim111111222333333336
type++-++
imageC1C2C3C3C6C6SL2(𝔽3)SL2(𝔽3)C3×SL2(𝔽3)A4C2×A43- 1+2C3×A4C2×3- 1+2C6×A4C32.A4C2×C32.A4Q8⋊3- 1+2
kernelC2×Q8⋊3- 1+2Q8⋊3- 1+2C2×Q8⋊C9Q8×C3×C6Q8⋊C9Q8×C32C3×C6C3×C6C6C62C3×C6C2×Q8C2×C6Q8C6C22C2C2
# reps1162622412112222664

Matrix representation of C2×Q8⋊3- 1+2 in GL7(𝔽37)

1000000
0100000
00360000
00036000
0000100
0000010
0000001
,
0600000
6000000
00031000
00310000
0000100
0000010
0000001
,
03600000
1000000
00036000
0010000
0000100
0000010
0000001
,
28900000
202000000
002017000
002828000
00002110
0000301521
000025101
,
26000000
02600000
00100000
00010000
0000100
00007260
0000263610

G:=sub<GL(7,GF(37))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,6,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,31,0,0,0,0,0,31,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,36,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[28,20,0,0,0,0,0,9,20,0,0,0,0,0,0,0,20,28,0,0,0,0,0,17,28,0,0,0,0,0,0,0,21,30,25,0,0,0,0,1,15,10,0,0,0,0,0,21,1],[26,0,0,0,0,0,0,0,26,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,1,7,26,0,0,0,0,0,26,36,0,0,0,0,0,0,10] >;

C2×Q8⋊3- 1+2 in GAP, Magma, Sage, TeX

C_2\times Q_8\rtimes 3_-^{1+2}
% in TeX

G:=Group("C2xQ8:ES-(3,1)");
// GroupNames label

G:=SmallGroup(432,335);
// by ID

G=gap.SmallGroup(432,335);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,134,261,1901,172,3414,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^9=e^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,d*b*d^-1=c,b*e=e*b,d*c*d^-1=b*c,c*e=e*c,e*d*e^-1=d^4>;
// generators/relations

׿
×
𝔽