Extensions 1→N→G→Q→1 with N=C4×D27 and Q=C2

Direct product G=N×Q with N=C4×D27 and Q=C2
dρLabelID
C2×C4×D27216C2xC4xD27432,44

Semidirect products G=N:Q with N=C4×D27 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D27)⋊1C2 = D4×D27φ: C2/C1C2 ⊆ Out C4×D271084+(C4xD27):1C2432,47
(C4×D27)⋊2C2 = D42D27φ: C2/C1C2 ⊆ Out C4×D272164-(C4xD27):2C2432,48
(C4×D27)⋊3C2 = Q83D27φ: C2/C1C2 ⊆ Out C4×D272164+(C4xD27):3C2432,50
(C4×D27)⋊4C2 = D1085C2φ: C2/C1C2 ⊆ Out C4×D272162(C4xD27):4C2432,46

Non-split extensions G=N.Q with N=C4×D27 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D27).1C2 = Q8×D27φ: C2/C1C2 ⊆ Out C4×D272164-(C4xD27).1C2432,49
(C4×D27).2C2 = C8⋊D27φ: C2/C1C2 ⊆ Out C4×D272162(C4xD27).2C2432,6
(C4×D27).3C2 = C8×D27φ: trivial image2162(C4xD27).3C2432,5

׿
×
𝔽