Extensions 1→N→G→Q→1 with N=C2×C18 and Q=Dic3

Direct product G=N×Q with N=C2×C18 and Q=Dic3
dρLabelID
Dic3×C2×C18144Dic3xC2xC18432,373

Semidirect products G=N:Q with N=C2×C18 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C18)⋊1Dic3 = C9×A4⋊C4φ: Dic3/C2S3 ⊆ Aut C2×C181083(C2xC18):1Dic3432,242
(C2×C18)⋊2Dic3 = A4⋊Dic9φ: Dic3/C2S3 ⊆ Aut C2×C181086-(C2xC18):2Dic3432,254
(C2×C18)⋊3Dic3 = C9×C6.D4φ: Dic3/C6C2 ⊆ Aut C2×C1872(C2xC18):3Dic3432,165
(C2×C18)⋊4Dic3 = C62.127D6φ: Dic3/C6C2 ⊆ Aut C2×C18216(C2xC18):4Dic3432,198
(C2×C18)⋊5Dic3 = C22×C9⋊Dic3φ: Dic3/C6C2 ⊆ Aut C2×C18432(C2xC18):5Dic3432,396

Non-split extensions G=N.Q with N=C2×C18 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C18).Dic3 = C18.S4φ: Dic3/C2S3 ⊆ Aut C2×C181086-(C2xC18).Dic3432,39
(C2×C18).2Dic3 = C9×C4.Dic3φ: Dic3/C6C2 ⊆ Aut C2×C18722(C2xC18).2Dic3432,127
(C2×C18).3Dic3 = C2×C27⋊C8φ: Dic3/C6C2 ⊆ Aut C2×C18432(C2xC18).3Dic3432,9
(C2×C18).4Dic3 = C4.Dic27φ: Dic3/C6C2 ⊆ Aut C2×C182162(C2xC18).4Dic3432,10
(C2×C18).5Dic3 = C54.D4φ: Dic3/C6C2 ⊆ Aut C2×C18216(C2xC18).5Dic3432,19
(C2×C18).6Dic3 = C22×Dic27φ: Dic3/C6C2 ⊆ Aut C2×C18432(C2xC18).6Dic3432,51
(C2×C18).7Dic3 = C2×C36.S3φ: Dic3/C6C2 ⊆ Aut C2×C18432(C2xC18).7Dic3432,178
(C2×C18).8Dic3 = C36.69D6φ: Dic3/C6C2 ⊆ Aut C2×C18216(C2xC18).8Dic3432,179
(C2×C18).9Dic3 = C18×C3⋊C8central extension (φ=1)144(C2xC18).9Dic3432,126

׿
×
𝔽