d | ρ | Label | ID | ||
---|---|---|---|---|---|
Dic3×C2×C18 | 144 | Dic3xC2xC18 | 432,373 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C18)⋊1Dic3 = C9×A4⋊C4 | φ: Dic3/C2 → S3 ⊆ Aut C2×C18 | 108 | 3 | (C2xC18):1Dic3 | 432,242 |
(C2×C18)⋊2Dic3 = A4⋊Dic9 | φ: Dic3/C2 → S3 ⊆ Aut C2×C18 | 108 | 6- | (C2xC18):2Dic3 | 432,254 |
(C2×C18)⋊3Dic3 = C9×C6.D4 | φ: Dic3/C6 → C2 ⊆ Aut C2×C18 | 72 | (C2xC18):3Dic3 | 432,165 | |
(C2×C18)⋊4Dic3 = C62.127D6 | φ: Dic3/C6 → C2 ⊆ Aut C2×C18 | 216 | (C2xC18):4Dic3 | 432,198 | |
(C2×C18)⋊5Dic3 = C22×C9⋊Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C2×C18 | 432 | (C2xC18):5Dic3 | 432,396 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C18).Dic3 = C18.S4 | φ: Dic3/C2 → S3 ⊆ Aut C2×C18 | 108 | 6- | (C2xC18).Dic3 | 432,39 |
(C2×C18).2Dic3 = C9×C4.Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C2×C18 | 72 | 2 | (C2xC18).2Dic3 | 432,127 |
(C2×C18).3Dic3 = C2×C27⋊C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C18 | 432 | (C2xC18).3Dic3 | 432,9 | |
(C2×C18).4Dic3 = C4.Dic27 | φ: Dic3/C6 → C2 ⊆ Aut C2×C18 | 216 | 2 | (C2xC18).4Dic3 | 432,10 |
(C2×C18).5Dic3 = C54.D4 | φ: Dic3/C6 → C2 ⊆ Aut C2×C18 | 216 | (C2xC18).5Dic3 | 432,19 | |
(C2×C18).6Dic3 = C22×Dic27 | φ: Dic3/C6 → C2 ⊆ Aut C2×C18 | 432 | (C2xC18).6Dic3 | 432,51 | |
(C2×C18).7Dic3 = C2×C36.S3 | φ: Dic3/C6 → C2 ⊆ Aut C2×C18 | 432 | (C2xC18).7Dic3 | 432,178 | |
(C2×C18).8Dic3 = C36.69D6 | φ: Dic3/C6 → C2 ⊆ Aut C2×C18 | 216 | (C2xC18).8Dic3 | 432,179 | |
(C2×C18).9Dic3 = C18×C3⋊C8 | central extension (φ=1) | 144 | (C2xC18).9Dic3 | 432,126 |