Copied to
clipboard

G = Dic3×C2×C18order 432 = 24·33

Direct product of C2×C18 and Dic3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: Dic3×C2×C18, C62.20C12, (C2×C6)⋊5C36, (C6×C18)⋊3C4, C62(C2×C36), C32(C22×C36), (C2×C18).54D6, C23.4(S3×C9), (C2×C62).24C6, (C22×C6).9C18, C62.57(C2×C6), C6.9(C22×C18), C6.34(C6×Dic3), (C22×C18).12S3, C22.11(S3×C18), C18.57(C22×S3), (C6×C18).30C22, (C3×C18).36C23, (C6×Dic3).17C6, C32.3(C22×C12), (C2×C6×C18).3C2, C2.2(S3×C2×C18), C6.70(S3×C2×C6), (C3×C18)⋊7(C2×C4), (C3×C9)⋊8(C22×C4), C3.4(Dic3×C2×C6), (C2×C6).88(S3×C6), (Dic3×C2×C6).2C3, (C2×C6).15(C2×C18), (C3×C6).55(C2×C12), (C3×C6).46(C22×C6), (C22×C6).38(C3×S3), (C2×C6).27(C3×Dic3), (C3×Dic3).21(C2×C6), SmallGroup(432,373)

Series: Derived Chief Lower central Upper central

C1C3 — Dic3×C2×C18
C1C3C32C3×C6C3×C18C9×Dic3Dic3×C18 — Dic3×C2×C18
C3 — Dic3×C2×C18
C1C22×C18

Generators and relations for Dic3×C2×C18
 G = < a,b,c,d | a2=b18=c6=1, d2=c3, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 292 in 194 conjugacy classes, 129 normal (21 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2×C4, C23, C9, C9, C32, Dic3, C12, C2×C6, C2×C6, C22×C4, C18, C18, C18, C3×C6, C3×C6, C2×Dic3, C2×C12, C22×C6, C22×C6, C3×C9, C36, C2×C18, C2×C18, C3×Dic3, C62, C22×Dic3, C22×C12, C3×C18, C3×C18, C2×C36, C22×C18, C22×C18, C6×Dic3, C2×C62, C9×Dic3, C6×C18, C22×C36, Dic3×C2×C6, Dic3×C18, C2×C6×C18, Dic3×C2×C18
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C23, C9, Dic3, C12, D6, C2×C6, C22×C4, C18, C3×S3, C2×Dic3, C2×C12, C22×S3, C22×C6, C36, C2×C18, C3×Dic3, S3×C6, C22×Dic3, C22×C12, S3×C9, C2×C36, C22×C18, C6×Dic3, S3×C2×C6, C9×Dic3, S3×C18, C22×C36, Dic3×C2×C6, Dic3×C18, S3×C2×C18, Dic3×C2×C18

Smallest permutation representation of Dic3×C2×C18
On 144 points
Generators in S144
(1 114)(2 115)(3 116)(4 117)(5 118)(6 119)(7 120)(8 121)(9 122)(10 123)(11 124)(12 125)(13 126)(14 109)(15 110)(16 111)(17 112)(18 113)(19 50)(20 51)(21 52)(22 53)(23 54)(24 37)(25 38)(26 39)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(55 144)(56 127)(57 128)(58 129)(59 130)(60 131)(61 132)(62 133)(63 134)(64 135)(65 136)(66 137)(67 138)(68 139)(69 140)(70 141)(71 142)(72 143)(73 107)(74 108)(75 91)(76 92)(77 93)(78 94)(79 95)(80 96)(81 97)(82 98)(83 99)(84 100)(85 101)(86 102)(87 103)(88 104)(89 105)(90 106)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 102 7 108 13 96)(2 103 8 91 14 97)(3 104 9 92 15 98)(4 105 10 93 16 99)(5 106 11 94 17 100)(6 107 12 95 18 101)(19 63 31 57 25 69)(20 64 32 58 26 70)(21 65 33 59 27 71)(22 66 34 60 28 72)(23 67 35 61 29 55)(24 68 36 62 30 56)(37 139 49 133 43 127)(38 140 50 134 44 128)(39 141 51 135 45 129)(40 142 52 136 46 130)(41 143 53 137 47 131)(42 144 54 138 48 132)(73 125 79 113 85 119)(74 126 80 114 86 120)(75 109 81 115 87 121)(76 110 82 116 88 122)(77 111 83 117 89 123)(78 112 84 118 90 124)
(1 56 108 36)(2 57 91 19)(3 58 92 20)(4 59 93 21)(5 60 94 22)(6 61 95 23)(7 62 96 24)(8 63 97 25)(9 64 98 26)(10 65 99 27)(11 66 100 28)(12 67 101 29)(13 68 102 30)(14 69 103 31)(15 70 104 32)(16 71 105 33)(17 72 106 34)(18 55 107 35)(37 120 133 80)(38 121 134 81)(39 122 135 82)(40 123 136 83)(41 124 137 84)(42 125 138 85)(43 126 139 86)(44 109 140 87)(45 110 141 88)(46 111 142 89)(47 112 143 90)(48 113 144 73)(49 114 127 74)(50 115 128 75)(51 116 129 76)(52 117 130 77)(53 118 131 78)(54 119 132 79)

G:=sub<Sym(144)| (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,121)(9,122)(10,123)(11,124)(12,125)(13,126)(14,109)(15,110)(16,111)(17,112)(18,113)(19,50)(20,51)(21,52)(22,53)(23,54)(24,37)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(55,144)(56,127)(57,128)(58,129)(59,130)(60,131)(61,132)(62,133)(63,134)(64,135)(65,136)(66,137)(67,138)(68,139)(69,140)(70,141)(71,142)(72,143)(73,107)(74,108)(75,91)(76,92)(77,93)(78,94)(79,95)(80,96)(81,97)(82,98)(83,99)(84,100)(85,101)(86,102)(87,103)(88,104)(89,105)(90,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,102,7,108,13,96)(2,103,8,91,14,97)(3,104,9,92,15,98)(4,105,10,93,16,99)(5,106,11,94,17,100)(6,107,12,95,18,101)(19,63,31,57,25,69)(20,64,32,58,26,70)(21,65,33,59,27,71)(22,66,34,60,28,72)(23,67,35,61,29,55)(24,68,36,62,30,56)(37,139,49,133,43,127)(38,140,50,134,44,128)(39,141,51,135,45,129)(40,142,52,136,46,130)(41,143,53,137,47,131)(42,144,54,138,48,132)(73,125,79,113,85,119)(74,126,80,114,86,120)(75,109,81,115,87,121)(76,110,82,116,88,122)(77,111,83,117,89,123)(78,112,84,118,90,124), (1,56,108,36)(2,57,91,19)(3,58,92,20)(4,59,93,21)(5,60,94,22)(6,61,95,23)(7,62,96,24)(8,63,97,25)(9,64,98,26)(10,65,99,27)(11,66,100,28)(12,67,101,29)(13,68,102,30)(14,69,103,31)(15,70,104,32)(16,71,105,33)(17,72,106,34)(18,55,107,35)(37,120,133,80)(38,121,134,81)(39,122,135,82)(40,123,136,83)(41,124,137,84)(42,125,138,85)(43,126,139,86)(44,109,140,87)(45,110,141,88)(46,111,142,89)(47,112,143,90)(48,113,144,73)(49,114,127,74)(50,115,128,75)(51,116,129,76)(52,117,130,77)(53,118,131,78)(54,119,132,79)>;

G:=Group( (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,121)(9,122)(10,123)(11,124)(12,125)(13,126)(14,109)(15,110)(16,111)(17,112)(18,113)(19,50)(20,51)(21,52)(22,53)(23,54)(24,37)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(55,144)(56,127)(57,128)(58,129)(59,130)(60,131)(61,132)(62,133)(63,134)(64,135)(65,136)(66,137)(67,138)(68,139)(69,140)(70,141)(71,142)(72,143)(73,107)(74,108)(75,91)(76,92)(77,93)(78,94)(79,95)(80,96)(81,97)(82,98)(83,99)(84,100)(85,101)(86,102)(87,103)(88,104)(89,105)(90,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,102,7,108,13,96)(2,103,8,91,14,97)(3,104,9,92,15,98)(4,105,10,93,16,99)(5,106,11,94,17,100)(6,107,12,95,18,101)(19,63,31,57,25,69)(20,64,32,58,26,70)(21,65,33,59,27,71)(22,66,34,60,28,72)(23,67,35,61,29,55)(24,68,36,62,30,56)(37,139,49,133,43,127)(38,140,50,134,44,128)(39,141,51,135,45,129)(40,142,52,136,46,130)(41,143,53,137,47,131)(42,144,54,138,48,132)(73,125,79,113,85,119)(74,126,80,114,86,120)(75,109,81,115,87,121)(76,110,82,116,88,122)(77,111,83,117,89,123)(78,112,84,118,90,124), (1,56,108,36)(2,57,91,19)(3,58,92,20)(4,59,93,21)(5,60,94,22)(6,61,95,23)(7,62,96,24)(8,63,97,25)(9,64,98,26)(10,65,99,27)(11,66,100,28)(12,67,101,29)(13,68,102,30)(14,69,103,31)(15,70,104,32)(16,71,105,33)(17,72,106,34)(18,55,107,35)(37,120,133,80)(38,121,134,81)(39,122,135,82)(40,123,136,83)(41,124,137,84)(42,125,138,85)(43,126,139,86)(44,109,140,87)(45,110,141,88)(46,111,142,89)(47,112,143,90)(48,113,144,73)(49,114,127,74)(50,115,128,75)(51,116,129,76)(52,117,130,77)(53,118,131,78)(54,119,132,79) );

G=PermutationGroup([[(1,114),(2,115),(3,116),(4,117),(5,118),(6,119),(7,120),(8,121),(9,122),(10,123),(11,124),(12,125),(13,126),(14,109),(15,110),(16,111),(17,112),(18,113),(19,50),(20,51),(21,52),(22,53),(23,54),(24,37),(25,38),(26,39),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(55,144),(56,127),(57,128),(58,129),(59,130),(60,131),(61,132),(62,133),(63,134),(64,135),(65,136),(66,137),(67,138),(68,139),(69,140),(70,141),(71,142),(72,143),(73,107),(74,108),(75,91),(76,92),(77,93),(78,94),(79,95),(80,96),(81,97),(82,98),(83,99),(84,100),(85,101),(86,102),(87,103),(88,104),(89,105),(90,106)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,102,7,108,13,96),(2,103,8,91,14,97),(3,104,9,92,15,98),(4,105,10,93,16,99),(5,106,11,94,17,100),(6,107,12,95,18,101),(19,63,31,57,25,69),(20,64,32,58,26,70),(21,65,33,59,27,71),(22,66,34,60,28,72),(23,67,35,61,29,55),(24,68,36,62,30,56),(37,139,49,133,43,127),(38,140,50,134,44,128),(39,141,51,135,45,129),(40,142,52,136,46,130),(41,143,53,137,47,131),(42,144,54,138,48,132),(73,125,79,113,85,119),(74,126,80,114,86,120),(75,109,81,115,87,121),(76,110,82,116,88,122),(77,111,83,117,89,123),(78,112,84,118,90,124)], [(1,56,108,36),(2,57,91,19),(3,58,92,20),(4,59,93,21),(5,60,94,22),(6,61,95,23),(7,62,96,24),(8,63,97,25),(9,64,98,26),(10,65,99,27),(11,66,100,28),(12,67,101,29),(13,68,102,30),(14,69,103,31),(15,70,104,32),(16,71,105,33),(17,72,106,34),(18,55,107,35),(37,120,133,80),(38,121,134,81),(39,122,135,82),(40,123,136,83),(41,124,137,84),(42,125,138,85),(43,126,139,86),(44,109,140,87),(45,110,141,88),(46,111,142,89),(47,112,143,90),(48,113,144,73),(49,114,127,74),(50,115,128,75),(51,116,129,76),(52,117,130,77),(53,118,131,78),(54,119,132,79)]])

216 conjugacy classes

class 1 2A···2G3A3B3C3D3E4A···4H6A···6N6O···6AI9A···9F9G···9L12A···12P18A···18AP18AQ···18CF36A···36AV
order12···2333334···46···66···69···99···912···1218···1818···1836···36
size11···1112223···31···12···21···12···23···31···12···23···3

216 irreducible representations

dim111111111111222222222
type++++-+
imageC1C2C2C3C4C6C6C9C12C18C18C36S3Dic3D6C3×S3C3×Dic3S3×C6S3×C9C9×Dic3S3×C18
kernelDic3×C2×C18Dic3×C18C2×C6×C18Dic3×C2×C6C6×C18C6×Dic3C2×C62C22×Dic3C62C2×Dic3C22×C6C2×C6C22×C18C2×C18C2×C18C22×C6C2×C6C2×C6C23C22C22
# reps161281226163664814328662418

Matrix representation of Dic3×C2×C18 in GL4(𝔽37) generated by

1000
03600
0010
0001
,
21000
0900
00120
00012
,
36000
03600
00110
00027
,
6000
0600
0001
00360
G:=sub<GL(4,GF(37))| [1,0,0,0,0,36,0,0,0,0,1,0,0,0,0,1],[21,0,0,0,0,9,0,0,0,0,12,0,0,0,0,12],[36,0,0,0,0,36,0,0,0,0,11,0,0,0,0,27],[6,0,0,0,0,6,0,0,0,0,0,36,0,0,1,0] >;

Dic3×C2×C18 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times C_2\times C_{18}
% in TeX

G:=Group("Dic3xC2xC18");
// GroupNames label

G:=SmallGroup(432,373);
// by ID

G=gap.SmallGroup(432,373);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,168,192,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^18=c^6=1,d^2=c^3,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽