Extensions 1→N→G→Q→1 with N=C2×C6 and Q=Dic9

Direct product G=N×Q with N=C2×C6 and Q=Dic9
dρLabelID
C2×C6×Dic9144C2xC6xDic9432,372

Semidirect products G=N:Q with N=C2×C6 and Q=Dic9
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1Dic9 = C3×C6.S4φ: Dic9/C6S3 ⊆ Aut C2×C6366(C2xC6):1Dic9432,250
(C2×C6)⋊2Dic9 = C62.10Dic3φ: Dic9/C6S3 ⊆ Aut C2×C6108(C2xC6):2Dic9432,259
(C2×C6)⋊3Dic9 = C3×C18.D4φ: Dic9/C18C2 ⊆ Aut C2×C672(C2xC6):3Dic9432,164
(C2×C6)⋊4Dic9 = C62.127D6φ: Dic9/C18C2 ⊆ Aut C2×C6216(C2xC6):4Dic9432,198
(C2×C6)⋊5Dic9 = C22×C9⋊Dic3φ: Dic9/C18C2 ⊆ Aut C2×C6432(C2xC6):5Dic9432,396

Non-split extensions G=N.Q with N=C2×C6 and Q=Dic9
extensionφ:Q→Aut NdρLabelID
(C2×C6).Dic9 = C18.S4φ: Dic9/C6S3 ⊆ Aut C2×C61086-(C2xC6).Dic9432,39
(C2×C6).2Dic9 = C3×C4.Dic9φ: Dic9/C18C2 ⊆ Aut C2×C6722(C2xC6).2Dic9432,125
(C2×C6).3Dic9 = C2×C27⋊C8φ: Dic9/C18C2 ⊆ Aut C2×C6432(C2xC6).3Dic9432,9
(C2×C6).4Dic9 = C4.Dic27φ: Dic9/C18C2 ⊆ Aut C2×C62162(C2xC6).4Dic9432,10
(C2×C6).5Dic9 = C54.D4φ: Dic9/C18C2 ⊆ Aut C2×C6216(C2xC6).5Dic9432,19
(C2×C6).6Dic9 = C22×Dic27φ: Dic9/C18C2 ⊆ Aut C2×C6432(C2xC6).6Dic9432,51
(C2×C6).7Dic9 = C2×C36.S3φ: Dic9/C18C2 ⊆ Aut C2×C6432(C2xC6).7Dic9432,178
(C2×C6).8Dic9 = C36.69D6φ: Dic9/C18C2 ⊆ Aut C2×C6216(C2xC6).8Dic9432,179
(C2×C6).9Dic9 = C6×C9⋊C8central extension (φ=1)144(C2xC6).9Dic9432,124

׿
×
𝔽