d | ρ | Label | ID | ||
---|---|---|---|---|---|
C2×C6×Dic9 | 144 | C2xC6xDic9 | 432,372 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C6)⋊1Dic9 = C3×C6.S4 | φ: Dic9/C6 → S3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6):1Dic9 | 432,250 |
(C2×C6)⋊2Dic9 = C62.10Dic3 | φ: Dic9/C6 → S3 ⊆ Aut C2×C6 | 108 | (C2xC6):2Dic9 | 432,259 | |
(C2×C6)⋊3Dic9 = C3×C18.D4 | φ: Dic9/C18 → C2 ⊆ Aut C2×C6 | 72 | (C2xC6):3Dic9 | 432,164 | |
(C2×C6)⋊4Dic9 = C62.127D6 | φ: Dic9/C18 → C2 ⊆ Aut C2×C6 | 216 | (C2xC6):4Dic9 | 432,198 | |
(C2×C6)⋊5Dic9 = C22×C9⋊Dic3 | φ: Dic9/C18 → C2 ⊆ Aut C2×C6 | 432 | (C2xC6):5Dic9 | 432,396 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C6).Dic9 = C18.S4 | φ: Dic9/C6 → S3 ⊆ Aut C2×C6 | 108 | 6- | (C2xC6).Dic9 | 432,39 |
(C2×C6).2Dic9 = C3×C4.Dic9 | φ: Dic9/C18 → C2 ⊆ Aut C2×C6 | 72 | 2 | (C2xC6).2Dic9 | 432,125 |
(C2×C6).3Dic9 = C2×C27⋊C8 | φ: Dic9/C18 → C2 ⊆ Aut C2×C6 | 432 | (C2xC6).3Dic9 | 432,9 | |
(C2×C6).4Dic9 = C4.Dic27 | φ: Dic9/C18 → C2 ⊆ Aut C2×C6 | 216 | 2 | (C2xC6).4Dic9 | 432,10 |
(C2×C6).5Dic9 = C54.D4 | φ: Dic9/C18 → C2 ⊆ Aut C2×C6 | 216 | (C2xC6).5Dic9 | 432,19 | |
(C2×C6).6Dic9 = C22×Dic27 | φ: Dic9/C18 → C2 ⊆ Aut C2×C6 | 432 | (C2xC6).6Dic9 | 432,51 | |
(C2×C6).7Dic9 = C2×C36.S3 | φ: Dic9/C18 → C2 ⊆ Aut C2×C6 | 432 | (C2xC6).7Dic9 | 432,178 | |
(C2×C6).8Dic9 = C36.69D6 | φ: Dic9/C18 → C2 ⊆ Aut C2×C6 | 216 | (C2xC6).8Dic9 | 432,179 | |
(C2×C6).9Dic9 = C6×C9⋊C8 | central extension (φ=1) | 144 | (C2xC6).9Dic9 | 432,124 |