Extensions 1→N→G→Q→1 with N=C2xC4 and Q=S3xC9

Direct product G=NxQ with N=C2xC4 and Q=S3xC9
dρLabelID
S3xC2xC36144S3xC2xC36432,345

Semidirect products G=N:Q with N=C2xC4 and Q=S3xC9
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(S3xC9) = C9xD6:C4φ: S3xC9/C3xC9C2 ⊆ Aut C2xC4144(C2xC4):1(S3xC9)432,135
(C2xC4):2(S3xC9) = C18xD12φ: S3xC9/C3xC9C2 ⊆ Aut C2xC4144(C2xC4):2(S3xC9)432,346
(C2xC4):3(S3xC9) = C9xC4oD12φ: S3xC9/C3xC9C2 ⊆ Aut C2xC4722(C2xC4):3(S3xC9)432,347

Non-split extensions G=N.Q with N=C2xC4 and Q=S3xC9
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(S3xC9) = C9xDic3:C4φ: S3xC9/C3xC9C2 ⊆ Aut C2xC4144(C2xC4).1(S3xC9)432,132
(C2xC4).2(S3xC9) = C9xC4.Dic3φ: S3xC9/C3xC9C2 ⊆ Aut C2xC4722(C2xC4).2(S3xC9)432,127
(C2xC4).3(S3xC9) = C9xC4:Dic3φ: S3xC9/C3xC9C2 ⊆ Aut C2xC4144(C2xC4).3(S3xC9)432,133
(C2xC4).4(S3xC9) = C18xDic6φ: S3xC9/C3xC9C2 ⊆ Aut C2xC4144(C2xC4).4(S3xC9)432,341
(C2xC4).5(S3xC9) = C18xC3:C8central extension (φ=1)144(C2xC4).5(S3xC9)432,126
(C2xC4).6(S3xC9) = Dic3xC36central extension (φ=1)144(C2xC4).6(S3xC9)432,131

׿
x
:
Z
F
o
wr
Q
<