Copied to
clipboard

G = C18×Dic6order 432 = 24·33

Direct product of C18 and Dic6

direct product, metabelian, supersoluble, monomial

Aliases: C18×Dic6, C36.74D6, C6⋊(Q8×C9), (C3×C18)⋊2Q8, C31(Q8×C18), (C6×Dic6).C3, C4.11(S3×C18), (C6×C12).35C6, (C2×C36).20S3, (C6×C36).20C2, (C2×C12).4C18, (C2×C18).51D6, C3.4(C6×Dic6), C12.109(S3×C6), C12.11(C2×C18), C32.2(C6×Q8), C6.1(C22×C18), C22.8(S3×C18), C62.53(C2×C6), C6.16(C3×Dic6), C18.49(C22×S3), (C6×C18).26C22, (C3×C36).79C22, (C3×C18).28C23, (C2×Dic3).3C18, Dic3.1(C2×C18), (C6×Dic3).10C6, (C3×Dic6).11C6, (Dic3×C18).8C2, (C9×Dic3).13C22, (C3×C9)⋊5(C2×Q8), C2.3(S3×C2×C18), C6.62(S3×C2×C6), (C2×C4).4(S3×C9), (C2×C6).85(S3×C6), (C3×C6).11(C3×Q8), (C2×C12).42(C3×S3), (C2×C6).11(C2×C18), (C3×C12).80(C2×C6), (C3×C6).38(C22×C6), (C3×Dic3).10(C2×C6), SmallGroup(432,341)

Series: Derived Chief Lower central Upper central

C1C6 — C18×Dic6
C1C3C32C3×C6C3×C18C9×Dic3Dic3×C18 — C18×Dic6
C3C6 — C18×Dic6
C1C2×C18C2×C36

Generators and relations for C18×Dic6
 G = < a,b,c | a18=b12=1, c2=b6, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 212 in 130 conjugacy classes, 81 normal (27 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C6, C2×C4, C2×C4, Q8, C9, C9, C32, Dic3, C12, C12, C2×C6, C2×C6, C2×Q8, C18, C18, C18, C3×C6, C3×C6, Dic6, C2×Dic3, C2×C12, C2×C12, C3×Q8, C3×C9, C36, C36, C2×C18, C2×C18, C3×Dic3, C3×C12, C62, C2×Dic6, C6×Q8, C3×C18, C3×C18, C2×C36, C2×C36, Q8×C9, C3×Dic6, C6×Dic3, C6×C12, C9×Dic3, C3×C36, C6×C18, Q8×C18, C6×Dic6, C9×Dic6, Dic3×C18, C6×C36, C18×Dic6
Quotients: C1, C2, C3, C22, S3, C6, Q8, C23, C9, D6, C2×C6, C2×Q8, C18, C3×S3, Dic6, C3×Q8, C22×S3, C22×C6, C2×C18, S3×C6, C2×Dic6, C6×Q8, S3×C9, Q8×C9, C22×C18, C3×Dic6, S3×C2×C6, S3×C18, Q8×C18, C6×Dic6, C9×Dic6, S3×C2×C18, C18×Dic6

Smallest permutation representation of C18×Dic6
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 136 106 120 13 130 100 114 7 142 94 126)(2 137 107 121 14 131 101 115 8 143 95 109)(3 138 108 122 15 132 102 116 9 144 96 110)(4 139 91 123 16 133 103 117 10 127 97 111)(5 140 92 124 17 134 104 118 11 128 98 112)(6 141 93 125 18 135 105 119 12 129 99 113)(19 79 64 52 25 85 70 40 31 73 58 46)(20 80 65 53 26 86 71 41 32 74 59 47)(21 81 66 54 27 87 72 42 33 75 60 48)(22 82 67 37 28 88 55 43 34 76 61 49)(23 83 68 38 29 89 56 44 35 77 62 50)(24 84 69 39 30 90 57 45 36 78 63 51)
(1 66 100 33)(2 67 101 34)(3 68 102 35)(4 69 103 36)(5 70 104 19)(6 71 105 20)(7 72 106 21)(8 55 107 22)(9 56 108 23)(10 57 91 24)(11 58 92 25)(12 59 93 26)(13 60 94 27)(14 61 95 28)(15 62 96 29)(16 63 97 30)(17 64 98 31)(18 65 99 32)(37 131 76 109)(38 132 77 110)(39 133 78 111)(40 134 79 112)(41 135 80 113)(42 136 81 114)(43 137 82 115)(44 138 83 116)(45 139 84 117)(46 140 85 118)(47 141 86 119)(48 142 87 120)(49 143 88 121)(50 144 89 122)(51 127 90 123)(52 128 73 124)(53 129 74 125)(54 130 75 126)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,136,106,120,13,130,100,114,7,142,94,126)(2,137,107,121,14,131,101,115,8,143,95,109)(3,138,108,122,15,132,102,116,9,144,96,110)(4,139,91,123,16,133,103,117,10,127,97,111)(5,140,92,124,17,134,104,118,11,128,98,112)(6,141,93,125,18,135,105,119,12,129,99,113)(19,79,64,52,25,85,70,40,31,73,58,46)(20,80,65,53,26,86,71,41,32,74,59,47)(21,81,66,54,27,87,72,42,33,75,60,48)(22,82,67,37,28,88,55,43,34,76,61,49)(23,83,68,38,29,89,56,44,35,77,62,50)(24,84,69,39,30,90,57,45,36,78,63,51), (1,66,100,33)(2,67,101,34)(3,68,102,35)(4,69,103,36)(5,70,104,19)(6,71,105,20)(7,72,106,21)(8,55,107,22)(9,56,108,23)(10,57,91,24)(11,58,92,25)(12,59,93,26)(13,60,94,27)(14,61,95,28)(15,62,96,29)(16,63,97,30)(17,64,98,31)(18,65,99,32)(37,131,76,109)(38,132,77,110)(39,133,78,111)(40,134,79,112)(41,135,80,113)(42,136,81,114)(43,137,82,115)(44,138,83,116)(45,139,84,117)(46,140,85,118)(47,141,86,119)(48,142,87,120)(49,143,88,121)(50,144,89,122)(51,127,90,123)(52,128,73,124)(53,129,74,125)(54,130,75,126)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,136,106,120,13,130,100,114,7,142,94,126)(2,137,107,121,14,131,101,115,8,143,95,109)(3,138,108,122,15,132,102,116,9,144,96,110)(4,139,91,123,16,133,103,117,10,127,97,111)(5,140,92,124,17,134,104,118,11,128,98,112)(6,141,93,125,18,135,105,119,12,129,99,113)(19,79,64,52,25,85,70,40,31,73,58,46)(20,80,65,53,26,86,71,41,32,74,59,47)(21,81,66,54,27,87,72,42,33,75,60,48)(22,82,67,37,28,88,55,43,34,76,61,49)(23,83,68,38,29,89,56,44,35,77,62,50)(24,84,69,39,30,90,57,45,36,78,63,51), (1,66,100,33)(2,67,101,34)(3,68,102,35)(4,69,103,36)(5,70,104,19)(6,71,105,20)(7,72,106,21)(8,55,107,22)(9,56,108,23)(10,57,91,24)(11,58,92,25)(12,59,93,26)(13,60,94,27)(14,61,95,28)(15,62,96,29)(16,63,97,30)(17,64,98,31)(18,65,99,32)(37,131,76,109)(38,132,77,110)(39,133,78,111)(40,134,79,112)(41,135,80,113)(42,136,81,114)(43,137,82,115)(44,138,83,116)(45,139,84,117)(46,140,85,118)(47,141,86,119)(48,142,87,120)(49,143,88,121)(50,144,89,122)(51,127,90,123)(52,128,73,124)(53,129,74,125)(54,130,75,126) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,136,106,120,13,130,100,114,7,142,94,126),(2,137,107,121,14,131,101,115,8,143,95,109),(3,138,108,122,15,132,102,116,9,144,96,110),(4,139,91,123,16,133,103,117,10,127,97,111),(5,140,92,124,17,134,104,118,11,128,98,112),(6,141,93,125,18,135,105,119,12,129,99,113),(19,79,64,52,25,85,70,40,31,73,58,46),(20,80,65,53,26,86,71,41,32,74,59,47),(21,81,66,54,27,87,72,42,33,75,60,48),(22,82,67,37,28,88,55,43,34,76,61,49),(23,83,68,38,29,89,56,44,35,77,62,50),(24,84,69,39,30,90,57,45,36,78,63,51)], [(1,66,100,33),(2,67,101,34),(3,68,102,35),(4,69,103,36),(5,70,104,19),(6,71,105,20),(7,72,106,21),(8,55,107,22),(9,56,108,23),(10,57,91,24),(11,58,92,25),(12,59,93,26),(13,60,94,27),(14,61,95,28),(15,62,96,29),(16,63,97,30),(17,64,98,31),(18,65,99,32),(37,131,76,109),(38,132,77,110),(39,133,78,111),(40,134,79,112),(41,135,80,113),(42,136,81,114),(43,137,82,115),(44,138,83,116),(45,139,84,117),(46,140,85,118),(47,141,86,119),(48,142,87,120),(49,143,88,121),(50,144,89,122),(51,127,90,123),(52,128,73,124),(53,129,74,125),(54,130,75,126)]])

162 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D4E4F6A···6F6G···6O9A···9F9G···9L12A···12P12Q···12X18A···18R18S···18AJ36A···36AJ36AK···36BH
order1222333334444446···66···69···99···912···1212···1218···1818···1836···3636···36
size1111112222266661···12···21···12···22···26···61···12···22···26···6

162 irreducible representations

dim111111111111222222222222222
type+++++-++-
imageC1C2C2C2C3C6C6C6C9C18C18C18S3Q8D6D6C3×S3Dic6C3×Q8S3×C6S3×C6S3×C9Q8×C9C3×Dic6S3×C18S3×C18C9×Dic6
kernelC18×Dic6C9×Dic6Dic3×C18C6×C36C6×Dic6C3×Dic6C6×Dic3C6×C12C2×Dic6Dic6C2×Dic3C2×C12C2×C36C3×C18C36C2×C18C2×C12C18C3×C6C12C2×C6C2×C4C6C6C4C22C2
# reps14212842624126122124442612812624

Matrix representation of C18×Dic6 in GL5(𝔽37)

40000
016000
001600
00010
00001
,
360000
011000
002700
0002020
000417
,
360000
00100
01000
0001523
0003222

G:=sub<GL(5,GF(37))| [4,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,1],[36,0,0,0,0,0,11,0,0,0,0,0,27,0,0,0,0,0,20,4,0,0,0,20,17],[36,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,15,32,0,0,0,23,22] >;

C18×Dic6 in GAP, Magma, Sage, TeX

C_{18}\times {\rm Dic}_6
% in TeX

G:=Group("C18xDic6");
// GroupNames label

G:=SmallGroup(432,341);
// by ID

G=gap.SmallGroup(432,341);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,168,590,142,192,14118]);
// Polycyclic

G:=Group<a,b,c|a^18=b^12=1,c^2=b^6,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽