Extensions 1→N→G→Q→1 with N=C4×C9⋊S3 and Q=C2

Direct product G=N×Q with N=C4×C9⋊S3 and Q=C2
dρLabelID
C2×C4×C9⋊S3216C2xC4xC9:S3432,381

Semidirect products G=N:Q with N=C4×C9⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C9⋊S3)⋊1C2 = D18.D6φ: C2/C1C2 ⊆ Out C4×C9⋊S3724(C4xC9:S3):1C2432,281
(C4×C9⋊S3)⋊2C2 = D12⋊D9φ: C2/C1C2 ⊆ Out C4×C9⋊S3724(C4xC9:S3):2C2432,286
(C4×C9⋊S3)⋊3C2 = C36⋊D6φ: C2/C1C2 ⊆ Out C4×C9⋊S3724(C4xC9:S3):3C2432,293
(C4×C9⋊S3)⋊4C2 = D4×C9⋊S3φ: C2/C1C2 ⊆ Out C4×C9⋊S3108(C4xC9:S3):4C2432,388
(C4×C9⋊S3)⋊5C2 = C36.27D6φ: C2/C1C2 ⊆ Out C4×C9⋊S3216(C4xC9:S3):5C2432,389
(C4×C9⋊S3)⋊6C2 = C36.29D6φ: C2/C1C2 ⊆ Out C4×C9⋊S3216(C4xC9:S3):6C2432,393
(C4×C9⋊S3)⋊7C2 = D6.D18φ: C2/C1C2 ⊆ Out C4×C9⋊S3724(C4xC9:S3):7C2432,287
(C4×C9⋊S3)⋊8C2 = C4×S3×D9φ: C2/C1C2 ⊆ Out C4×C9⋊S3724(C4xC9:S3):8C2432,290
(C4×C9⋊S3)⋊9C2 = C36.70D6φ: C2/C1C2 ⊆ Out C4×C9⋊S3216(C4xC9:S3):9C2432,383

Non-split extensions G=N.Q with N=C4×C9⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×C9⋊S3).1C2 = Dic18⋊S3φ: C2/C1C2 ⊆ Out C4×C9⋊S3724(C4xC9:S3).1C2432,283
(C4×C9⋊S3).2C2 = Q8×C9⋊S3φ: C2/C1C2 ⊆ Out C4×C9⋊S3216(C4xC9:S3).2C2432,392
(C4×C9⋊S3).3C2 = C36.38D6φ: C2/C1C2 ⊆ Out C4×C9⋊S3724(C4xC9:S3).3C2432,59
(C4×C9⋊S3).4C2 = C36.40D6φ: C2/C1C2 ⊆ Out C4×C9⋊S3724(C4xC9:S3).4C2432,61
(C4×C9⋊S3).5C2 = C72⋊S3φ: C2/C1C2 ⊆ Out C4×C9⋊S3216(C4xC9:S3).5C2432,170
(C4×C9⋊S3).6C2 = C8×C9⋊S3φ: trivial image216(C4xC9:S3).6C2432,169

׿
×
𝔽