metabelian, supersoluble, monomial
Aliases: C36.40D6, C12.40D18, C9⋊C8⋊4S3, C3⋊C8⋊5D9, C12.62S32, C6.2(C4×D9), C18.2(C4×S3), C4.25(S3×D9), C9⋊1(C8⋊S3), (C3×C9)⋊2M4(2), C3⋊1(C8⋊D9), C9⋊Dic3.2C4, (C3×C12).158D6, (C3×C36).39C22, C6.2(C6.D6), C32.3(C8⋊S3), C2.3(C18.D6), C3.1(C12.31D6), (C3×C9⋊C8)⋊8C2, (C9×C3⋊C8)⋊7C2, (C4×C9⋊S3).4C2, (C2×C9⋊S3).2C4, (C3×C3⋊C8).10S3, (C3×C18).4(C2×C4), (C3×C6).36(C4×S3), SmallGroup(432,61)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C36.40D6
G = < a,b,c | a36=c2=1, b6=a27, bab-1=cac=a17, cbc=b5 >
Subgroups: 500 in 76 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C9, C9, C32, Dic3, C12, C12, D6, M4(2), D9, C18, C18, C3⋊S3, C3×C6, C3⋊C8, C3⋊C8, C24, C4×S3, C3×C9, Dic9, C36, C36, D18, C3⋊Dic3, C3×C12, C2×C3⋊S3, C8⋊S3, C9⋊S3, C3×C18, C9⋊C8, C72, C4×D9, C3×C3⋊C8, C3×C3⋊C8, C4×C3⋊S3, C9⋊Dic3, C3×C36, C2×C9⋊S3, C8⋊D9, C12.31D6, C3×C9⋊C8, C9×C3⋊C8, C4×C9⋊S3, C36.40D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D6, M4(2), D9, C4×S3, D18, S32, C8⋊S3, C4×D9, C6.D6, S3×D9, C8⋊D9, C12.31D6, C18.D6, C36.40D6
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 59 22 56 7 53 28 50 13 47 34 44 19 41 4 38 25 71 10 68 31 65 16 62)(2 40 23 37 8 70 29 67 14 64 35 61 20 58 5 55 26 52 11 49 32 46 17 43)(3 57 24 54 9 51 30 48 15 45 36 42 21 39 6 72 27 69 12 66 33 63 18 60)
(1 13)(2 30)(3 11)(4 28)(5 9)(6 26)(8 24)(10 22)(12 20)(14 18)(15 35)(17 33)(19 31)(21 29)(23 27)(32 36)(37 63)(38 44)(39 61)(40 42)(41 59)(43 57)(45 55)(46 72)(47 53)(48 70)(49 51)(50 68)(52 66)(54 64)(56 62)(58 60)(65 71)(67 69)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,59,22,56,7,53,28,50,13,47,34,44,19,41,4,38,25,71,10,68,31,65,16,62)(2,40,23,37,8,70,29,67,14,64,35,61,20,58,5,55,26,52,11,49,32,46,17,43)(3,57,24,54,9,51,30,48,15,45,36,42,21,39,6,72,27,69,12,66,33,63,18,60), (1,13)(2,30)(3,11)(4,28)(5,9)(6,26)(8,24)(10,22)(12,20)(14,18)(15,35)(17,33)(19,31)(21,29)(23,27)(32,36)(37,63)(38,44)(39,61)(40,42)(41,59)(43,57)(45,55)(46,72)(47,53)(48,70)(49,51)(50,68)(52,66)(54,64)(56,62)(58,60)(65,71)(67,69)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,59,22,56,7,53,28,50,13,47,34,44,19,41,4,38,25,71,10,68,31,65,16,62)(2,40,23,37,8,70,29,67,14,64,35,61,20,58,5,55,26,52,11,49,32,46,17,43)(3,57,24,54,9,51,30,48,15,45,36,42,21,39,6,72,27,69,12,66,33,63,18,60), (1,13)(2,30)(3,11)(4,28)(5,9)(6,26)(8,24)(10,22)(12,20)(14,18)(15,35)(17,33)(19,31)(21,29)(23,27)(32,36)(37,63)(38,44)(39,61)(40,42)(41,59)(43,57)(45,55)(46,72)(47,53)(48,70)(49,51)(50,68)(52,66)(54,64)(56,62)(58,60)(65,71)(67,69) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,59,22,56,7,53,28,50,13,47,34,44,19,41,4,38,25,71,10,68,31,65,16,62),(2,40,23,37,8,70,29,67,14,64,35,61,20,58,5,55,26,52,11,49,32,46,17,43),(3,57,24,54,9,51,30,48,15,45,36,42,21,39,6,72,27,69,12,66,33,63,18,60)], [(1,13),(2,30),(3,11),(4,28),(5,9),(6,26),(8,24),(10,22),(12,20),(14,18),(15,35),(17,33),(19,31),(21,29),(23,27),(32,36),(37,63),(38,44),(39,61),(40,42),(41,59),(43,57),(45,55),(46,72),(47,53),(48,70),(49,51),(50,68),(52,66),(54,64),(56,62),(58,60),(65,71),(67,69)]])
66 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 12C | 12D | 12E | 12F | 18A | 18B | 18C | 18D | 18E | 18F | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | 36A | ··· | 36F | 36G | ··· | 36L | 72A | ··· | 72L |
order | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 36 | ··· | 36 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 54 | 2 | 2 | 4 | 1 | 1 | 54 | 2 | 2 | 4 | 6 | 6 | 18 | 18 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | S3 | S3 | D6 | D6 | M4(2) | D9 | C4×S3 | C4×S3 | D18 | C8⋊S3 | C8⋊S3 | C4×D9 | C8⋊D9 | S32 | C6.D6 | S3×D9 | C12.31D6 | C18.D6 | C36.40D6 |
kernel | C36.40D6 | C3×C9⋊C8 | C9×C3⋊C8 | C4×C9⋊S3 | C9⋊Dic3 | C2×C9⋊S3 | C9⋊C8 | C3×C3⋊C8 | C36 | C3×C12 | C3×C9 | C3⋊C8 | C18 | C3×C6 | C12 | C9 | C32 | C6 | C3 | C12 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 2 | 3 | 4 | 4 | 6 | 12 | 1 | 1 | 3 | 2 | 3 | 6 |
Matrix representation of C36.40D6 ►in GL6(𝔽73)
46 | 0 | 0 | 0 | 0 | 0 |
0 | 46 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 70 | 42 |
0 | 0 | 0 | 0 | 31 | 28 |
49 | 1 | 0 | 0 | 0 | 0 |
54 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 46 | 0 |
0 | 0 | 0 | 0 | 27 | 27 |
1 | 0 | 0 | 0 | 0 | 0 |
48 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
G:=sub<GL(6,GF(73))| [46,0,0,0,0,0,0,46,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,70,31,0,0,0,0,42,28],[49,54,0,0,0,0,1,24,0,0,0,0,0,0,1,1,0,0,0,0,72,0,0,0,0,0,0,0,46,27,0,0,0,0,0,27],[1,48,0,0,0,0,0,72,0,0,0,0,0,0,72,72,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,0,1] >;
C36.40D6 in GAP, Magma, Sage, TeX
C_{36}._{40}D_6
% in TeX
G:=Group("C36.40D6");
// GroupNames label
G:=SmallGroup(432,61);
// by ID
G=gap.SmallGroup(432,61);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,141,36,58,3091,662,4037,7069]);
// Polycyclic
G:=Group<a,b,c|a^36=c^2=1,b^6=a^27,b*a*b^-1=c*a*c=a^17,c*b*c=b^5>;
// generators/relations