Copied to
clipboard

G = Dic18:S3order 432 = 24·33

3rd semidirect product of Dic18 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial

Aliases: Dic6:4D9, C36.24D6, Dic18:3S3, C12.22D18, Dic9.1D6, Dic3.4D18, C9:S3:Q8, C9:1(S3xQ8), C3:1(Q8xD9), C12.16S32, C4.20(S3xD9), (C9xDic6):6C2, (C3xC12).92D6, C18.D6.C2, C6.4(C22xD9), (C3xDic18):7C2, C9:Dic6:4C2, C32.3(S3xQ8), C18.4(C22xS3), (C3xC18).4C23, (C3xDic3).4D6, (C3xDic6).8S3, (C3xC36).27C22, C9:Dic3.8C22, (C3xDic9).1C22, (C9xDic3).4C22, C3.1(Dic3.D6), (C3xC9):2(C2xQ8), C2.8(C2xS3xD9), C6.23(C2xS32), (C4xC9:S3).1C2, (C2xC9:S3).6C22, (C3xC6).72(C22xS3), SmallGroup(432,283)

Series: Derived Chief Lower central Upper central

C1C3xC18 — Dic18:S3
C1C3C32C3xC9C3xC18C9xDic3C18.D6 — Dic18:S3
C3xC9C3xC18 — Dic18:S3
C1C2C4

Generators and relations for Dic18:S3
 G = < a,b,c,d | a36=c3=d2=1, b2=a18, bab-1=a-1, ac=ca, dad=a17, bc=cb, bd=db, dcd=c-1 >

Subgroups: 784 in 130 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, Q8, C9, C9, C32, Dic3, Dic3, C12, C12, D6, C2xQ8, D9, C18, C18, C3:S3, C3xC6, Dic6, Dic6, C4xS3, C3xQ8, C3xC9, Dic9, Dic9, C36, C36, D18, C3xDic3, C3xDic3, C3:Dic3, C3xC12, C2xC3:S3, S3xQ8, C9:S3, C3xC18, Dic18, Dic18, C4xD9, Q8xC9, C6.D6, C32:2Q8, C3xDic6, C3xDic6, C4xC3:S3, C3xDic9, C9xDic3, C9:Dic3, C3xC36, C2xC9:S3, Q8xD9, Dic3.D6, C9:Dic6, C18.D6, C3xDic18, C9xDic6, C4xC9:S3, Dic18:S3
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2xQ8, D9, C22xS3, D18, S32, S3xQ8, C22xD9, C2xS32, S3xD9, Q8xD9, Dic3.D6, C2xS3xD9, Dic18:S3

Smallest permutation representation of Dic18:S3
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 55 19 37)(2 54 20 72)(3 53 21 71)(4 52 22 70)(5 51 23 69)(6 50 24 68)(7 49 25 67)(8 48 26 66)(9 47 27 65)(10 46 28 64)(11 45 29 63)(12 44 30 62)(13 43 31 61)(14 42 32 60)(15 41 33 59)(16 40 34 58)(17 39 35 57)(18 38 36 56)
(1 25 13)(2 26 14)(3 27 15)(4 28 16)(5 29 17)(6 30 18)(7 31 19)(8 32 20)(9 33 21)(10 34 22)(11 35 23)(12 36 24)(37 49 61)(38 50 62)(39 51 63)(40 52 64)(41 53 65)(42 54 66)(43 55 67)(44 56 68)(45 57 69)(46 58 70)(47 59 71)(48 60 72)
(1 19)(2 36)(3 17)(4 34)(5 15)(6 32)(7 13)(8 30)(9 11)(10 28)(12 26)(14 24)(16 22)(18 20)(21 35)(23 33)(25 31)(27 29)(37 55)(38 72)(39 53)(40 70)(41 51)(42 68)(43 49)(44 66)(45 47)(46 64)(48 62)(50 60)(52 58)(54 56)(57 71)(59 69)(61 67)(63 65)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,55,19,37)(2,54,20,72)(3,53,21,71)(4,52,22,70)(5,51,23,69)(6,50,24,68)(7,49,25,67)(8,48,26,66)(9,47,27,65)(10,46,28,64)(11,45,29,63)(12,44,30,62)(13,43,31,61)(14,42,32,60)(15,41,33,59)(16,40,34,58)(17,39,35,57)(18,38,36,56), (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72), (1,19)(2,36)(3,17)(4,34)(5,15)(6,32)(7,13)(8,30)(9,11)(10,28)(12,26)(14,24)(16,22)(18,20)(21,35)(23,33)(25,31)(27,29)(37,55)(38,72)(39,53)(40,70)(41,51)(42,68)(43,49)(44,66)(45,47)(46,64)(48,62)(50,60)(52,58)(54,56)(57,71)(59,69)(61,67)(63,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,55,19,37)(2,54,20,72)(3,53,21,71)(4,52,22,70)(5,51,23,69)(6,50,24,68)(7,49,25,67)(8,48,26,66)(9,47,27,65)(10,46,28,64)(11,45,29,63)(12,44,30,62)(13,43,31,61)(14,42,32,60)(15,41,33,59)(16,40,34,58)(17,39,35,57)(18,38,36,56), (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72), (1,19)(2,36)(3,17)(4,34)(5,15)(6,32)(7,13)(8,30)(9,11)(10,28)(12,26)(14,24)(16,22)(18,20)(21,35)(23,33)(25,31)(27,29)(37,55)(38,72)(39,53)(40,70)(41,51)(42,68)(43,49)(44,66)(45,47)(46,64)(48,62)(50,60)(52,58)(54,56)(57,71)(59,69)(61,67)(63,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,55,19,37),(2,54,20,72),(3,53,21,71),(4,52,22,70),(5,51,23,69),(6,50,24,68),(7,49,25,67),(8,48,26,66),(9,47,27,65),(10,46,28,64),(11,45,29,63),(12,44,30,62),(13,43,31,61),(14,42,32,60),(15,41,33,59),(16,40,34,58),(17,39,35,57),(18,38,36,56)], [(1,25,13),(2,26,14),(3,27,15),(4,28,16),(5,29,17),(6,30,18),(7,31,19),(8,32,20),(9,33,21),(10,34,22),(11,35,23),(12,36,24),(37,49,61),(38,50,62),(39,51,63),(40,52,64),(41,53,65),(42,54,66),(43,55,67),(44,56,68),(45,57,69),(46,58,70),(47,59,71),(48,60,72)], [(1,19),(2,36),(3,17),(4,34),(5,15),(6,32),(7,13),(8,30),(9,11),(10,28),(12,26),(14,24),(16,22),(18,20),(21,35),(23,33),(25,31),(27,29),(37,55),(38,72),(39,53),(40,70),(41,51),(42,68),(43,49),(44,66),(45,47),(46,64),(48,62),(50,60),(52,58),(54,56),(57,71),(59,69),(61,67),(63,65)]])

51 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F6A6B6C9A9B9C9D9E9F12A12B12C12D12E12F12G12H18A18B18C18D18E18F36A···36I36J···36O
order1222333444444666999999121212121212121218181818181836···3636···36
size1127272242661818542242224444444121236362224444···412···12

51 irreducible representations

dim1111112222222222444444444
type++++++++-++++++++--++-+
imageC1C2C2C2C2C2S3S3Q8D6D6D6D6D9D18D18S32S3xQ8S3xQ8C2xS32S3xD9Q8xD9Dic3.D6C2xS3xD9Dic18:S3
kernelDic18:S3C9:Dic6C18.D6C3xDic18C9xDic6C4xC9:S3Dic18C3xDic6C9:S3Dic9C36C3xDic3C3xC12Dic6Dic3C12C12C9C32C6C4C3C3C2C1
# reps1221111122121363111133236

Matrix representation of Dic18:S3 in GL6(F37)

010000
3600000
001000
000100
0000620
00001726
,
380000
8340000
0036000
0003600
000001
000010
,
100000
010000
0036100
0036000
000010
000001
,
100000
010000
000100
001000
000001
000010

G:=sub<GL(6,GF(37))| [0,36,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,17,0,0,0,0,20,26],[3,8,0,0,0,0,8,34,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,36,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

Dic18:S3 in GAP, Magma, Sage, TeX

{\rm Dic}_{18}\rtimes S_3
% in TeX

G:=Group("Dic18:S3");
// GroupNames label

G:=SmallGroup(432,283);
// by ID

G=gap.SmallGroup(432,283);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,64,254,135,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^36=c^3=d^2=1,b^2=a^18,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^17,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<