metabelian, supersoluble, monomial
Aliases: Dic6⋊4D9, C36.24D6, Dic18⋊3S3, C12.22D18, Dic9.1D6, Dic3.4D18, C9⋊S3⋊Q8, C9⋊1(S3×Q8), C3⋊1(Q8×D9), C12.16S32, C4.20(S3×D9), (C9×Dic6)⋊6C2, (C3×C12).92D6, C18.D6.C2, C6.4(C22×D9), (C3×Dic18)⋊7C2, C9⋊Dic6⋊4C2, C32.3(S3×Q8), C18.4(C22×S3), (C3×C18).4C23, (C3×Dic3).4D6, (C3×Dic6).8S3, (C3×C36).27C22, C9⋊Dic3.8C22, (C3×Dic9).1C22, (C9×Dic3).4C22, C3.1(Dic3.D6), (C3×C9)⋊2(C2×Q8), C2.8(C2×S3×D9), C6.23(C2×S32), (C4×C9⋊S3).1C2, (C2×C9⋊S3).6C22, (C3×C6).72(C22×S3), SmallGroup(432,283)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic18⋊S3
G = < a,b,c,d | a36=c3=d2=1, b2=a18, bab-1=a-1, ac=ca, dad=a17, bc=cb, bd=db, dcd=c-1 >
Subgroups: 784 in 130 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, Q8, C9, C9, C32, Dic3, Dic3, C12, C12, D6, C2×Q8, D9, C18, C18, C3⋊S3, C3×C6, Dic6, Dic6, C4×S3, C3×Q8, C3×C9, Dic9, Dic9, C36, C36, D18, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, S3×Q8, C9⋊S3, C3×C18, Dic18, Dic18, C4×D9, Q8×C9, C6.D6, C32⋊2Q8, C3×Dic6, C3×Dic6, C4×C3⋊S3, C3×Dic9, C9×Dic3, C9⋊Dic3, C3×C36, C2×C9⋊S3, Q8×D9, Dic3.D6, C9⋊Dic6, C18.D6, C3×Dic18, C9×Dic6, C4×C9⋊S3, Dic18⋊S3
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, D9, C22×S3, D18, S32, S3×Q8, C22×D9, C2×S32, S3×D9, Q8×D9, Dic3.D6, C2×S3×D9, Dic18⋊S3
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 55 19 37)(2 54 20 72)(3 53 21 71)(4 52 22 70)(5 51 23 69)(6 50 24 68)(7 49 25 67)(8 48 26 66)(9 47 27 65)(10 46 28 64)(11 45 29 63)(12 44 30 62)(13 43 31 61)(14 42 32 60)(15 41 33 59)(16 40 34 58)(17 39 35 57)(18 38 36 56)
(1 25 13)(2 26 14)(3 27 15)(4 28 16)(5 29 17)(6 30 18)(7 31 19)(8 32 20)(9 33 21)(10 34 22)(11 35 23)(12 36 24)(37 49 61)(38 50 62)(39 51 63)(40 52 64)(41 53 65)(42 54 66)(43 55 67)(44 56 68)(45 57 69)(46 58 70)(47 59 71)(48 60 72)
(1 19)(2 36)(3 17)(4 34)(5 15)(6 32)(7 13)(8 30)(9 11)(10 28)(12 26)(14 24)(16 22)(18 20)(21 35)(23 33)(25 31)(27 29)(37 55)(38 72)(39 53)(40 70)(41 51)(42 68)(43 49)(44 66)(45 47)(46 64)(48 62)(50 60)(52 58)(54 56)(57 71)(59 69)(61 67)(63 65)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,55,19,37)(2,54,20,72)(3,53,21,71)(4,52,22,70)(5,51,23,69)(6,50,24,68)(7,49,25,67)(8,48,26,66)(9,47,27,65)(10,46,28,64)(11,45,29,63)(12,44,30,62)(13,43,31,61)(14,42,32,60)(15,41,33,59)(16,40,34,58)(17,39,35,57)(18,38,36,56), (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72), (1,19)(2,36)(3,17)(4,34)(5,15)(6,32)(7,13)(8,30)(9,11)(10,28)(12,26)(14,24)(16,22)(18,20)(21,35)(23,33)(25,31)(27,29)(37,55)(38,72)(39,53)(40,70)(41,51)(42,68)(43,49)(44,66)(45,47)(46,64)(48,62)(50,60)(52,58)(54,56)(57,71)(59,69)(61,67)(63,65)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,55,19,37)(2,54,20,72)(3,53,21,71)(4,52,22,70)(5,51,23,69)(6,50,24,68)(7,49,25,67)(8,48,26,66)(9,47,27,65)(10,46,28,64)(11,45,29,63)(12,44,30,62)(13,43,31,61)(14,42,32,60)(15,41,33,59)(16,40,34,58)(17,39,35,57)(18,38,36,56), (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72), (1,19)(2,36)(3,17)(4,34)(5,15)(6,32)(7,13)(8,30)(9,11)(10,28)(12,26)(14,24)(16,22)(18,20)(21,35)(23,33)(25,31)(27,29)(37,55)(38,72)(39,53)(40,70)(41,51)(42,68)(43,49)(44,66)(45,47)(46,64)(48,62)(50,60)(52,58)(54,56)(57,71)(59,69)(61,67)(63,65) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,55,19,37),(2,54,20,72),(3,53,21,71),(4,52,22,70),(5,51,23,69),(6,50,24,68),(7,49,25,67),(8,48,26,66),(9,47,27,65),(10,46,28,64),(11,45,29,63),(12,44,30,62),(13,43,31,61),(14,42,32,60),(15,41,33,59),(16,40,34,58),(17,39,35,57),(18,38,36,56)], [(1,25,13),(2,26,14),(3,27,15),(4,28,16),(5,29,17),(6,30,18),(7,31,19),(8,32,20),(9,33,21),(10,34,22),(11,35,23),(12,36,24),(37,49,61),(38,50,62),(39,51,63),(40,52,64),(41,53,65),(42,54,66),(43,55,67),(44,56,68),(45,57,69),(46,58,70),(47,59,71),(48,60,72)], [(1,19),(2,36),(3,17),(4,34),(5,15),(6,32),(7,13),(8,30),(9,11),(10,28),(12,26),(14,24),(16,22),(18,20),(21,35),(23,33),(25,31),(27,29),(37,55),(38,72),(39,53),(40,70),(41,51),(42,68),(43,49),(44,66),(45,47),(46,64),(48,62),(50,60),(52,58),(54,56),(57,71),(59,69),(61,67),(63,65)]])
51 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 9A | 9B | 9C | 9D | 9E | 9F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 18A | 18B | 18C | 18D | 18E | 18F | 36A | ··· | 36I | 36J | ··· | 36O |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 36 | ··· | 36 | 36 | ··· | 36 |
size | 1 | 1 | 27 | 27 | 2 | 2 | 4 | 2 | 6 | 6 | 18 | 18 | 54 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 12 | 12 | 36 | 36 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | ··· | 4 | 12 | ··· | 12 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | + | + | + | + | + | + | + | + | - | - | + | + | - | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | Q8 | D6 | D6 | D6 | D6 | D9 | D18 | D18 | S32 | S3×Q8 | S3×Q8 | C2×S32 | S3×D9 | Q8×D9 | Dic3.D6 | C2×S3×D9 | Dic18⋊S3 |
kernel | Dic18⋊S3 | C9⋊Dic6 | C18.D6 | C3×Dic18 | C9×Dic6 | C4×C9⋊S3 | Dic18 | C3×Dic6 | C9⋊S3 | Dic9 | C36 | C3×Dic3 | C3×C12 | Dic6 | Dic3 | C12 | C12 | C9 | C32 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 3 | 6 | 3 | 1 | 1 | 1 | 1 | 3 | 3 | 2 | 3 | 6 |
Matrix representation of Dic18⋊S3 ►in GL6(𝔽37)
0 | 1 | 0 | 0 | 0 | 0 |
36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 20 |
0 | 0 | 0 | 0 | 17 | 26 |
3 | 8 | 0 | 0 | 0 | 0 |
8 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 1 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(37))| [0,36,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,17,0,0,0,0,20,26],[3,8,0,0,0,0,8,34,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,36,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
Dic18⋊S3 in GAP, Magma, Sage, TeX
{\rm Dic}_{18}\rtimes S_3
% in TeX
G:=Group("Dic18:S3");
// GroupNames label
G:=SmallGroup(432,283);
// by ID
G=gap.SmallGroup(432,283);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,64,254,135,58,3091,662,4037,7069]);
// Polycyclic
G:=Group<a,b,c,d|a^36=c^3=d^2=1,b^2=a^18,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^17,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations