Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C18

Direct product G=N×Q with N=C4×S3 and Q=C18
dρLabelID
S3×C2×C36144S3xC2xC36432,345

Semidirect products G=N:Q with N=C4×S3 and Q=C18
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1C18 = S3×D4×C9φ: C18/C9C2 ⊆ Out C4×S3724(C4xS3):1C18432,358
(C4×S3)⋊2C18 = C9×D42S3φ: C18/C9C2 ⊆ Out C4×S3724(C4xS3):2C18432,359
(C4×S3)⋊3C18 = C9×Q83S3φ: C18/C9C2 ⊆ Out C4×S31444(C4xS3):3C18432,367
(C4×S3)⋊4C18 = C9×C4○D12φ: C18/C9C2 ⊆ Out C4×S3722(C4xS3):4C18432,347

Non-split extensions G=N.Q with N=C4×S3 and Q=C18
extensionφ:Q→Out NdρLabelID
(C4×S3).1C18 = S3×Q8×C9φ: C18/C9C2 ⊆ Out C4×S31444(C4xS3).1C18432,366
(C4×S3).2C18 = C9×C8⋊S3φ: C18/C9C2 ⊆ Out C4×S31442(C4xS3).2C18432,110
(C4×S3).3C18 = S3×C72φ: trivial image1442(C4xS3).3C18432,109

׿
×
𝔽