Copied to
clipboard

G = C9×Q83S3order 432 = 24·33

Direct product of C9 and Q83S3

direct product, metabelian, supersoluble, monomial

Aliases: C9×Q83S3, D124C18, C36.50D6, Q84(S3×C9), (Q8×C9)⋊7S3, (C4×S3)⋊3C18, (S3×C36)⋊9C2, C4.7(S3×C18), (C3×Q8)⋊5C18, (C9×D12)⋊10C2, (S3×C12).5C6, C12.56(S3×C6), C12.7(C2×C18), D6.3(C2×C18), (C3×D12).4C6, C6.8(C22×C18), (S3×C18).7C22, (C3×C18).35C23, (C3×C36).49C22, C18.56(C22×S3), Dic3.5(C2×C18), (Q8×C32).21C6, (C9×Dic3).17C22, C33(C9×C4○D4), C2.9(S3×C2×C18), C6.69(S3×C2×C6), (Q8×C3×C9)⋊10C2, (C3×C9)⋊17(C4○D4), (S3×C6).9(C2×C6), (C3×C12).34(C2×C6), (C3×Q8).38(C3×S3), C3.4(C3×Q83S3), C32.4(C3×C4○D4), (C3×C6).45(C22×C6), (C3×Q83S3).2C3, (C3×Dic3).20(C2×C6), SmallGroup(432,367)

Series: Derived Chief Lower central Upper central

C1C6 — C9×Q83S3
C1C3C32C3×C6C3×C18S3×C18S3×C36 — C9×Q83S3
C3C6 — C9×Q83S3
C1C18Q8×C9

Generators and relations for C9×Q83S3
 G = < a,b,c,d,e | a9=b4=d3=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ce=ec, ede=d-1 >

Subgroups: 264 in 132 conjugacy classes, 69 normal (24 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, C4○D4, C18, C18, C3×S3, C3×C6, C4×S3, D12, C2×C12, C3×D4, C3×Q8, C3×Q8, C3×C9, C36, C36, C2×C18, C3×Dic3, C3×C12, S3×C6, Q83S3, C3×C4○D4, S3×C9, C3×C18, C2×C36, D4×C9, Q8×C9, Q8×C9, S3×C12, C3×D12, Q8×C32, C9×Dic3, C3×C36, S3×C18, C9×C4○D4, C3×Q83S3, S3×C36, C9×D12, Q8×C3×C9, C9×Q83S3
Quotients: C1, C2, C3, C22, S3, C6, C23, C9, D6, C2×C6, C4○D4, C18, C3×S3, C22×S3, C22×C6, C2×C18, S3×C6, Q83S3, C3×C4○D4, S3×C9, C22×C18, S3×C2×C6, S3×C18, C9×C4○D4, C3×Q83S3, S3×C2×C18, C9×Q83S3

Smallest permutation representation of C9×Q83S3
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 38 20 31)(2 39 21 32)(3 40 22 33)(4 41 23 34)(5 42 24 35)(6 43 25 36)(7 44 26 28)(8 45 27 29)(9 37 19 30)(10 128 139 121)(11 129 140 122)(12 130 141 123)(13 131 142 124)(14 132 143 125)(15 133 144 126)(16 134 136 118)(17 135 137 119)(18 127 138 120)(46 64 62 80)(47 65 63 81)(48 66 55 73)(49 67 56 74)(50 68 57 75)(51 69 58 76)(52 70 59 77)(53 71 60 78)(54 72 61 79)(82 100 98 116)(83 101 99 117)(84 102 91 109)(85 103 92 110)(86 104 93 111)(87 105 94 112)(88 106 95 113)(89 107 96 114)(90 108 97 115)
(1 56 20 49)(2 57 21 50)(3 58 22 51)(4 59 23 52)(5 60 24 53)(6 61 25 54)(7 62 26 46)(8 63 27 47)(9 55 19 48)(10 110 139 103)(11 111 140 104)(12 112 141 105)(13 113 142 106)(14 114 143 107)(15 115 144 108)(16 116 136 100)(17 117 137 101)(18 109 138 102)(28 80 44 64)(29 81 45 65)(30 73 37 66)(31 74 38 67)(32 75 39 68)(33 76 40 69)(34 77 41 70)(35 78 42 71)(36 79 43 72)(82 134 98 118)(83 135 99 119)(84 127 91 120)(85 128 92 121)(86 129 93 122)(87 130 94 123)(88 131 95 124)(89 132 96 125)(90 133 97 126)
(1 7 4)(2 8 5)(3 9 6)(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)(127 130 133)(128 131 134)(129 132 135)(136 139 142)(137 140 143)(138 141 144)
(1 85)(2 86)(3 87)(4 88)(5 89)(6 90)(7 82)(8 83)(9 84)(10 74)(11 75)(12 76)(13 77)(14 78)(15 79)(16 80)(17 81)(18 73)(19 91)(20 92)(21 93)(22 94)(23 95)(24 96)(25 97)(26 98)(27 99)(28 100)(29 101)(30 102)(31 103)(32 104)(33 105)(34 106)(35 107)(36 108)(37 109)(38 110)(39 111)(40 112)(41 113)(42 114)(43 115)(44 116)(45 117)(46 118)(47 119)(48 120)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(55 127)(56 128)(57 129)(58 130)(59 131)(60 132)(61 133)(62 134)(63 135)(64 136)(65 137)(66 138)(67 139)(68 140)(69 141)(70 142)(71 143)(72 144)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,38,20,31)(2,39,21,32)(3,40,22,33)(4,41,23,34)(5,42,24,35)(6,43,25,36)(7,44,26,28)(8,45,27,29)(9,37,19,30)(10,128,139,121)(11,129,140,122)(12,130,141,123)(13,131,142,124)(14,132,143,125)(15,133,144,126)(16,134,136,118)(17,135,137,119)(18,127,138,120)(46,64,62,80)(47,65,63,81)(48,66,55,73)(49,67,56,74)(50,68,57,75)(51,69,58,76)(52,70,59,77)(53,71,60,78)(54,72,61,79)(82,100,98,116)(83,101,99,117)(84,102,91,109)(85,103,92,110)(86,104,93,111)(87,105,94,112)(88,106,95,113)(89,107,96,114)(90,108,97,115), (1,56,20,49)(2,57,21,50)(3,58,22,51)(4,59,23,52)(5,60,24,53)(6,61,25,54)(7,62,26,46)(8,63,27,47)(9,55,19,48)(10,110,139,103)(11,111,140,104)(12,112,141,105)(13,113,142,106)(14,114,143,107)(15,115,144,108)(16,116,136,100)(17,117,137,101)(18,109,138,102)(28,80,44,64)(29,81,45,65)(30,73,37,66)(31,74,38,67)(32,75,39,68)(33,76,40,69)(34,77,41,70)(35,78,42,71)(36,79,43,72)(82,134,98,118)(83,135,99,119)(84,127,91,120)(85,128,92,121)(86,129,93,122)(87,130,94,123)(88,131,95,124)(89,132,96,125)(90,133,97,126), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144), (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,82)(8,83)(9,84)(10,74)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,81)(18,73)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,38,20,31)(2,39,21,32)(3,40,22,33)(4,41,23,34)(5,42,24,35)(6,43,25,36)(7,44,26,28)(8,45,27,29)(9,37,19,30)(10,128,139,121)(11,129,140,122)(12,130,141,123)(13,131,142,124)(14,132,143,125)(15,133,144,126)(16,134,136,118)(17,135,137,119)(18,127,138,120)(46,64,62,80)(47,65,63,81)(48,66,55,73)(49,67,56,74)(50,68,57,75)(51,69,58,76)(52,70,59,77)(53,71,60,78)(54,72,61,79)(82,100,98,116)(83,101,99,117)(84,102,91,109)(85,103,92,110)(86,104,93,111)(87,105,94,112)(88,106,95,113)(89,107,96,114)(90,108,97,115), (1,56,20,49)(2,57,21,50)(3,58,22,51)(4,59,23,52)(5,60,24,53)(6,61,25,54)(7,62,26,46)(8,63,27,47)(9,55,19,48)(10,110,139,103)(11,111,140,104)(12,112,141,105)(13,113,142,106)(14,114,143,107)(15,115,144,108)(16,116,136,100)(17,117,137,101)(18,109,138,102)(28,80,44,64)(29,81,45,65)(30,73,37,66)(31,74,38,67)(32,75,39,68)(33,76,40,69)(34,77,41,70)(35,78,42,71)(36,79,43,72)(82,134,98,118)(83,135,99,119)(84,127,91,120)(85,128,92,121)(86,129,93,122)(87,130,94,123)(88,131,95,124)(89,132,96,125)(90,133,97,126), (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144), (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,82)(8,83)(9,84)(10,74)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,81)(18,73)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,38,20,31),(2,39,21,32),(3,40,22,33),(4,41,23,34),(5,42,24,35),(6,43,25,36),(7,44,26,28),(8,45,27,29),(9,37,19,30),(10,128,139,121),(11,129,140,122),(12,130,141,123),(13,131,142,124),(14,132,143,125),(15,133,144,126),(16,134,136,118),(17,135,137,119),(18,127,138,120),(46,64,62,80),(47,65,63,81),(48,66,55,73),(49,67,56,74),(50,68,57,75),(51,69,58,76),(52,70,59,77),(53,71,60,78),(54,72,61,79),(82,100,98,116),(83,101,99,117),(84,102,91,109),(85,103,92,110),(86,104,93,111),(87,105,94,112),(88,106,95,113),(89,107,96,114),(90,108,97,115)], [(1,56,20,49),(2,57,21,50),(3,58,22,51),(4,59,23,52),(5,60,24,53),(6,61,25,54),(7,62,26,46),(8,63,27,47),(9,55,19,48),(10,110,139,103),(11,111,140,104),(12,112,141,105),(13,113,142,106),(14,114,143,107),(15,115,144,108),(16,116,136,100),(17,117,137,101),(18,109,138,102),(28,80,44,64),(29,81,45,65),(30,73,37,66),(31,74,38,67),(32,75,39,68),(33,76,40,69),(34,77,41,70),(35,78,42,71),(36,79,43,72),(82,134,98,118),(83,135,99,119),(84,127,91,120),(85,128,92,121),(86,129,93,122),(87,130,94,123),(88,131,95,124),(89,132,96,125),(90,133,97,126)], [(1,7,4),(2,8,5),(3,9,6),(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126),(127,130,133),(128,131,134),(129,132,135),(136,139,142),(137,140,143),(138,141,144)], [(1,85),(2,86),(3,87),(4,88),(5,89),(6,90),(7,82),(8,83),(9,84),(10,74),(11,75),(12,76),(13,77),(14,78),(15,79),(16,80),(17,81),(18,73),(19,91),(20,92),(21,93),(22,94),(23,95),(24,96),(25,97),(26,98),(27,99),(28,100),(29,101),(30,102),(31,103),(32,104),(33,105),(34,106),(35,107),(36,108),(37,109),(38,110),(39,111),(40,112),(41,113),(42,114),(43,115),(44,116),(45,117),(46,118),(47,119),(48,120),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(55,127),(56,128),(57,129),(58,130),(59,131),(60,132),(61,133),(62,134),(63,135),(64,136),(65,137),(66,138),(67,139),(68,140),(69,141),(70,142),(71,143),(72,144)]])

135 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E4A4B4C4D4E6A6B6C6D6E6F···6K9A···9F9G···9L12A···12F12G12H12I12J12K···12S18A···18F18G···18L18M···18AD36A···36R36S···36AD36AE···36AV
order122223333344444666666···69···99···912···121212121212···1218···1818···1818···1836···3636···3636···36
size116661122222233112226···61···12···22···233334···41···12···26···62···23···34···4

135 irreducible representations

dim111111111111222222222444
type+++++++
imageC1C2C2C2C3C6C6C6C9C18C18C18S3D6C4○D4C3×S3S3×C6C3×C4○D4S3×C9S3×C18C9×C4○D4Q83S3C3×Q83S3C9×Q83S3
kernelC9×Q83S3S3×C36C9×D12Q8×C3×C9C3×Q83S3S3×C12C3×D12Q8×C32Q83S3C4×S3D12C3×Q8Q8×C9C36C3×C9C3×Q8C12C32Q8C4C3C9C3C1
# reps1331266261818613226461812126

Matrix representation of C9×Q83S3 in GL4(𝔽37) generated by

26000
02600
00160
00016
,
13500
13600
0010
0001
,
261600
341100
0010
0001
,
1000
0100
00100
00026
,
82200
192900
0001
0010
G:=sub<GL(4,GF(37))| [26,0,0,0,0,26,0,0,0,0,16,0,0,0,0,16],[1,1,0,0,35,36,0,0,0,0,1,0,0,0,0,1],[26,34,0,0,16,11,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,10,0,0,0,0,26],[8,19,0,0,22,29,0,0,0,0,0,1,0,0,1,0] >;

C9×Q83S3 in GAP, Magma, Sage, TeX

C_9\times Q_8\rtimes_3S_3
% in TeX

G:=Group("C9xQ8:3S3");
// GroupNames label

G:=SmallGroup(432,367);
// by ID

G=gap.SmallGroup(432,367);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,176,590,303,142,192,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^9=b^4=d^3=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽