p-group, cyclic, abelian, monomial
Aliases: C9, also denoted Z9, SmallGroup(9,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C9 |
C1 — C9 |
C1 — C9 |
Generators and relations for C9
G = < a | a9=1 >
Character table of C9
class | 1 | 3A | 3B | 9A | 9B | 9C | 9D | 9E | 9F | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | ζ3 | ζ97 | ζ95 | ζ9 | ζ94 | ζ98 | ζ92 | linear of order 9 faithful |
ρ3 | 1 | ζ3 | ζ32 | ζ95 | ζ9 | ζ92 | ζ98 | ζ97 | ζ94 | linear of order 9 faithful |
ρ4 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ5 | 1 | ζ32 | ζ3 | ζ9 | ζ92 | ζ94 | ζ97 | ζ95 | ζ98 | linear of order 9 faithful |
ρ6 | 1 | ζ3 | ζ32 | ζ98 | ζ97 | ζ95 | ζ92 | ζ94 | ζ9 | linear of order 9 faithful |
ρ7 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ8 | 1 | ζ32 | ζ3 | ζ94 | ζ98 | ζ97 | ζ9 | ζ92 | ζ95 | linear of order 9 faithful |
ρ9 | 1 | ζ3 | ζ32 | ζ92 | ζ94 | ζ98 | ζ95 | ζ9 | ζ97 | linear of order 9 faithful |
(1 2 3 4 5 6 7 8 9)
G:=sub<Sym(9)| (1,2,3,4,5,6,7,8,9)>;
G:=Group( (1,2,3,4,5,6,7,8,9) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9)]])
G:=TransitiveGroup(9,1);
C9 is a maximal subgroup of
D9 C27 3- 1+2 C3.A4 C52⋊C9
Cp⋊C9, p=1 mod 3: C7⋊C9 C13⋊C9 C19⋊2C9 C19⋊C9 C31⋊C9 C37⋊2C9 C37⋊C9 C43⋊C9 ...
C9 is a maximal quotient of
C27 C3.A4 C52⋊C9
Cp⋊C9, p=1 mod 3: C7⋊C9 C13⋊C9 C19⋊2C9 C19⋊C9 C31⋊C9 C37⋊2C9 C37⋊C9 C43⋊C9 ...
action | f(x) | Disc(f) |
---|---|---|
9T1 | x9-x8-8x7+7x6+21x5-15x4-20x3+10x2+5x-1 | 198 |
Matrix representation of C9 ►in GL1(𝔽19) generated by
4 |
G:=sub<GL(1,GF(19))| [4] >;
C9 in GAP, Magma, Sage, TeX
C_9
% in TeX
G:=Group("C9");
// GroupNames label
G:=SmallGroup(9,1);
// by ID
G=gap.SmallGroup(9,1);
# by ID
G:=PCGroup([2,-3,-3,6]:ExponentLimit:=1);
// Polycyclic
G:=Group<a|a^9=1>;
// generators/relations
Export