Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C3.A4

Direct product G=N×Q with N=C2×C6 and Q=C3.A4
dρLabelID
C2×C6×C3.A4108C2xC6xC3.A4432,548

Semidirect products G=N:Q with N=C2×C6 and Q=C3.A4
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊(C3.A4) = C3×C24⋊C9φ: C3.A4/C2×C6C3 ⊆ Aut C2×C6108(C2xC6):(C3.A4)432,553

Non-split extensions G=N.Q with N=C2×C6 and Q=C3.A4
extensionφ:Q→Aut NdρLabelID
(C2×C6).1(C3.A4) = C42⋊C27φ: C3.A4/C2×C6C3 ⊆ Aut C2×C61083(C2xC6).1(C3.A4)432,3
(C2×C6).2(C3.A4) = C3×C42⋊C9φ: C3.A4/C2×C6C3 ⊆ Aut C2×C6108(C2xC6).2(C3.A4)432,101
(C2×C6).3(C3.A4) = C24⋊C27φ: C3.A4/C2×C6C3 ⊆ Aut C2×C6108(C2xC6).3(C3.A4)432,226
(C2×C6).4(C3.A4) = C2×Q8⋊C27central extension (φ=1)432(C2xC6).4(C3.A4)432,41
(C2×C6).5(C3.A4) = C22×C9.A4central extension (φ=1)108(C2xC6).5(C3.A4)432,225
(C2×C6).6(C3.A4) = C6×Q8⋊C9central extension (φ=1)432(C2xC6).6(C3.A4)432,334

׿
×
𝔽