metabelian, soluble, monomial, A-group
Aliases: C3.A4, C22⋊C9, (C2×C6).C3, SmallGroup(36,3)
Series: Derived ►Chief ►Lower central ►Upper central
C22 — C3.A4 |
Generators and relations for C3.A4
G = < a,b,c,d | a3=b2=c2=1, d3=a, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >
Character table of C3.A4
class | 1 | 2 | 3A | 3B | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | |
size | 1 | 3 | 1 | 1 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ9 | ζ95 | ζ92 | ζ97 | ζ94 | ζ98 | linear of order 9 |
ρ5 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ97 | ζ98 | ζ95 | ζ94 | ζ9 | ζ92 | linear of order 9 |
ρ6 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ92 | ζ9 | ζ94 | ζ95 | ζ98 | ζ97 | linear of order 9 |
ρ7 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ98 | ζ94 | ζ97 | ζ92 | ζ95 | ζ9 | linear of order 9 |
ρ8 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ94 | ζ92 | ζ98 | ζ9 | ζ97 | ζ95 | linear of order 9 |
ρ9 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ95 | ζ97 | ζ9 | ζ98 | ζ92 | ζ94 | linear of order 9 |
ρ10 | 3 | -1 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ11 | 3 | -1 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ12 | 3 | -1 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)
(2 17)(3 18)(5 11)(6 12)(8 14)(9 15)
(1 16)(3 18)(4 10)(6 12)(7 13)(9 15)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)
G:=sub<Sym(18)| (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18), (2,17)(3,18)(5,11)(6,12)(8,14)(9,15), (1,16)(3,18)(4,10)(6,12)(7,13)(9,15), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)>;
G:=Group( (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18), (2,17)(3,18)(5,11)(6,12)(8,14)(9,15), (1,16)(3,18)(4,10)(6,12)(7,13)(9,15), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18) );
G=PermutationGroup([[(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18)], [(2,17),(3,18),(5,11),(6,12),(8,14),(9,15)], [(1,16),(3,18),(4,10),(6,12),(7,13),(9,15)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18)]])
G:=TransitiveGroup(18,7);
C3.A4 is a maximal subgroup of
C3.S4 C9×A4 C9⋊A4 C32.A4 C42⋊C9 C24⋊C9 C21.A4 C39.A4
C3.A4 is a maximal quotient of
Q8⋊C9 C9.A4 C42⋊C9 C24⋊C9 C21.A4 C39.A4
Matrix representation of C3.A4 ►in GL3(𝔽7) generated by
4 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 4 |
6 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 6 |
6 | 0 | 0 |
0 | 6 | 0 |
0 | 0 | 1 |
0 | 0 | 4 |
1 | 0 | 0 |
0 | 1 | 0 |
G:=sub<GL(3,GF(7))| [4,0,0,0,4,0,0,0,4],[6,0,0,0,1,0,0,0,6],[6,0,0,0,6,0,0,0,1],[0,1,0,0,0,1,4,0,0] >;
C3.A4 in GAP, Magma, Sage, TeX
C_3.A_4
% in TeX
G:=Group("C3.A4");
// GroupNames label
G:=SmallGroup(36,3);
// by ID
G=gap.SmallGroup(36,3);
# by ID
G:=PCGroup([4,-3,-3,-2,2,12,218,435]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^2=1,d^3=a,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations
Export
Subgroup lattice of C3.A4 in TeX
Character table of C3.A4 in TeX