Extensions 1→N→G→Q→1 with N=C3 and Q=C3xD4:S3

Direct product G=NxQ with N=C3 and Q=C3xD4:S3
dρLabelID
C32xD4:S372C3^2xD4:S3432,475

Semidirect products G=N:Q with N=C3 and Q=C3xD4:S3
extensionφ:Q→Aut NdρLabelID
C3:1(C3xD4:S3) = C3xC3:D24φ: C3xD4:S3/C3xC3:C8C2 ⊆ Aut C3484C3:1(C3xD4:S3)432,419
C3:2(C3xD4:S3) = C3xC32:2D8φ: C3xD4:S3/C3xD12C2 ⊆ Aut C3484C3:2(C3xD4:S3)432,418
C3:3(C3xD4:S3) = C3xC32:7D8φ: C3xD4:S3/D4xC32C2 ⊆ Aut C372C3:3(C3xD4:S3)432,491

Non-split extensions G=N.Q with N=C3 and Q=C3xD4:S3
extensionφ:Q→Aut NdρLabelID
C3.1(C3xD4:S3) = C3xD4:D9φ: C3xD4:S3/D4xC32C2 ⊆ Aut C3724C3.1(C3xD4:S3)432,149
C3.2(C3xD4:S3) = He3:6D8φ: C3xD4:S3/D4xC32C2 ⊆ Aut C37212+C3.2(C3xD4:S3)432,153
C3.3(C3xD4:S3) = D36:C6φ: C3xD4:S3/D4xC32C2 ⊆ Aut C37212+C3.3(C3xD4:S3)432,155
C3.4(C3xD4:S3) = C9xD4:S3central extension (φ=1)724C3.4(C3xD4:S3)432,150

׿
x
:
Z
F
o
wr
Q
<