metabelian, supersoluble, monomial
Aliases: He3⋊6D8, C32⋊7D8⋊C3, C12.4(S3×C6), D4⋊(C32⋊C6), (D4×He3)⋊1C2, (C3×C12).9D6, C12⋊S3⋊2C6, C32⋊3(C3×D8), He3⋊3C8⋊4C2, He3⋊4D4⋊3C2, C32⋊4C8⋊2C6, (D4×C32)⋊1S3, (D4×C32)⋊1C6, C32⋊4(D4⋊S3), (C2×He3).28D4, C2.5(He3⋊6D4), (C4×He3).9C22, C3.2(C3×D4⋊S3), (C3×C12).2(C2×C6), (C3×D4).4(C3×S3), (C3×C6).13(C3×D4), C6.21(C3×C3⋊D4), C4.2(C2×C32⋊C6), (C3×C6).24(C3⋊D4), SmallGroup(432,153)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊6D8
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, dbd-1=ebe=b-1, cd=dc, ce=ec, ede=d-1 >
Subgroups: 505 in 93 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, D4, C32, C32, C12, C12, D6, C2×C6, D8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, C3×D4, He3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C62, D4⋊S3, C3×D8, C32⋊C6, C2×He3, C2×He3, C3×C3⋊C8, C32⋊4C8, C3×D12, C12⋊S3, D4×C32, D4×C32, C4×He3, C2×C32⋊C6, C22×He3, C3×D4⋊S3, C32⋊7D8, He3⋊3C8, He3⋊4D4, D4×He3, He3⋊6D8
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, D8, C3×S3, C3⋊D4, C3×D4, S3×C6, D4⋊S3, C3×D8, C32⋊C6, C3×C3⋊D4, C2×C32⋊C6, C3×D4⋊S3, He3⋊6D4, He3⋊6D8
(1 68 56)(2 49 69)(3 70 50)(4 51 71)(5 72 52)(6 53 65)(7 66 54)(8 55 67)(9 57 37)(10 38 58)(11 59 39)(12 40 60)(13 61 33)(14 34 62)(15 63 35)(16 36 64)(17 48 29)(18 30 41)(19 42 31)(20 32 43)(21 44 25)(22 26 45)(23 46 27)(24 28 47)
(1 15 41)(2 42 16)(3 9 43)(4 44 10)(5 11 45)(6 46 12)(7 13 47)(8 48 14)(17 62 67)(18 68 63)(19 64 69)(20 70 57)(21 58 71)(22 72 59)(23 60 65)(24 66 61)(25 38 51)(26 52 39)(27 40 53)(28 54 33)(29 34 55)(30 56 35)(31 36 49)(32 50 37)
(1 68 35)(2 69 36)(3 70 37)(4 71 38)(5 72 39)(6 65 40)(7 66 33)(8 67 34)(9 57 32)(10 58 25)(11 59 26)(12 60 27)(13 61 28)(14 62 29)(15 63 30)(16 64 31)(17 55 48)(18 56 41)(19 49 42)(20 50 43)(21 51 44)(22 52 45)(23 53 46)(24 54 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(1 8)(2 7)(3 6)(4 5)(9 12)(10 11)(13 16)(14 15)(17 18)(19 24)(20 23)(21 22)(25 26)(27 32)(28 31)(29 30)(33 36)(34 35)(37 40)(38 39)(41 48)(42 47)(43 46)(44 45)(49 54)(50 53)(51 52)(55 56)(57 60)(58 59)(61 64)(62 63)(65 70)(66 69)(67 68)(71 72)
G:=sub<Sym(72)| (1,68,56)(2,49,69)(3,70,50)(4,51,71)(5,72,52)(6,53,65)(7,66,54)(8,55,67)(9,57,37)(10,38,58)(11,59,39)(12,40,60)(13,61,33)(14,34,62)(15,63,35)(16,36,64)(17,48,29)(18,30,41)(19,42,31)(20,32,43)(21,44,25)(22,26,45)(23,46,27)(24,28,47), (1,15,41)(2,42,16)(3,9,43)(4,44,10)(5,11,45)(6,46,12)(7,13,47)(8,48,14)(17,62,67)(18,68,63)(19,64,69)(20,70,57)(21,58,71)(22,72,59)(23,60,65)(24,66,61)(25,38,51)(26,52,39)(27,40,53)(28,54,33)(29,34,55)(30,56,35)(31,36,49)(32,50,37), (1,68,35)(2,69,36)(3,70,37)(4,71,38)(5,72,39)(6,65,40)(7,66,33)(8,67,34)(9,57,32)(10,58,25)(11,59,26)(12,60,27)(13,61,28)(14,62,29)(15,63,30)(16,64,31)(17,55,48)(18,56,41)(19,49,42)(20,50,43)(21,51,44)(22,52,45)(23,53,46)(24,54,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(17,18)(19,24)(20,23)(21,22)(25,26)(27,32)(28,31)(29,30)(33,36)(34,35)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,54)(50,53)(51,52)(55,56)(57,60)(58,59)(61,64)(62,63)(65,70)(66,69)(67,68)(71,72)>;
G:=Group( (1,68,56)(2,49,69)(3,70,50)(4,51,71)(5,72,52)(6,53,65)(7,66,54)(8,55,67)(9,57,37)(10,38,58)(11,59,39)(12,40,60)(13,61,33)(14,34,62)(15,63,35)(16,36,64)(17,48,29)(18,30,41)(19,42,31)(20,32,43)(21,44,25)(22,26,45)(23,46,27)(24,28,47), (1,15,41)(2,42,16)(3,9,43)(4,44,10)(5,11,45)(6,46,12)(7,13,47)(8,48,14)(17,62,67)(18,68,63)(19,64,69)(20,70,57)(21,58,71)(22,72,59)(23,60,65)(24,66,61)(25,38,51)(26,52,39)(27,40,53)(28,54,33)(29,34,55)(30,56,35)(31,36,49)(32,50,37), (1,68,35)(2,69,36)(3,70,37)(4,71,38)(5,72,39)(6,65,40)(7,66,33)(8,67,34)(9,57,32)(10,58,25)(11,59,26)(12,60,27)(13,61,28)(14,62,29)(15,63,30)(16,64,31)(17,55,48)(18,56,41)(19,49,42)(20,50,43)(21,51,44)(22,52,45)(23,53,46)(24,54,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(17,18)(19,24)(20,23)(21,22)(25,26)(27,32)(28,31)(29,30)(33,36)(34,35)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,54)(50,53)(51,52)(55,56)(57,60)(58,59)(61,64)(62,63)(65,70)(66,69)(67,68)(71,72) );
G=PermutationGroup([[(1,68,56),(2,49,69),(3,70,50),(4,51,71),(5,72,52),(6,53,65),(7,66,54),(8,55,67),(9,57,37),(10,38,58),(11,59,39),(12,40,60),(13,61,33),(14,34,62),(15,63,35),(16,36,64),(17,48,29),(18,30,41),(19,42,31),(20,32,43),(21,44,25),(22,26,45),(23,46,27),(24,28,47)], [(1,15,41),(2,42,16),(3,9,43),(4,44,10),(5,11,45),(6,46,12),(7,13,47),(8,48,14),(17,62,67),(18,68,63),(19,64,69),(20,70,57),(21,58,71),(22,72,59),(23,60,65),(24,66,61),(25,38,51),(26,52,39),(27,40,53),(28,54,33),(29,34,55),(30,56,35),(31,36,49),(32,50,37)], [(1,68,35),(2,69,36),(3,70,37),(4,71,38),(5,72,39),(6,65,40),(7,66,33),(8,67,34),(9,57,32),(10,58,25),(11,59,26),(12,60,27),(13,61,28),(14,62,29),(15,63,30),(16,64,31),(17,55,48),(18,56,41),(19,49,42),(20,50,43),(21,51,44),(22,52,45),(23,53,46),(24,54,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(1,8),(2,7),(3,6),(4,5),(9,12),(10,11),(13,16),(14,15),(17,18),(19,24),(20,23),(21,22),(25,26),(27,32),(28,31),(29,30),(33,36),(34,35),(37,40),(38,39),(41,48),(42,47),(43,46),(44,45),(49,54),(50,53),(51,52),(55,56),(57,60),(58,59),(61,64),(62,63),(65,70),(66,69),(67,68),(71,72)]])
41 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | ··· | 6P | 6Q | 6R | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 4 | 36 | 2 | 3 | 3 | 6 | 6 | 6 | 2 | 2 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 12 | ··· | 12 | 36 | 36 | 18 | 18 | 4 | 6 | 6 | 12 | 12 | 12 | 18 | 18 | 18 | 18 |
41 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | He3⋊6D8 | S3 | D4 | D6 | D8 | C3×S3 | C3⋊D4 | C3×D4 | S3×C6 | C3×D8 | C3×C3⋊D4 | D4⋊S3 | C3×D4⋊S3 | C32⋊C6 | C2×C32⋊C6 | He3⋊6D4 |
kernel | He3⋊6D8 | He3⋊3C8 | He3⋊4D4 | D4×He3 | C32⋊7D8 | C32⋊4C8 | C12⋊S3 | D4×C32 | C1 | D4×C32 | C2×He3 | C3×C12 | He3 | C3×D4 | C3×C6 | C3×C6 | C12 | C32 | C6 | C32 | C3 | D4 | C4 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 1 | 1 | 2 |
Matrix representation of He3⋊6D8 ►in GL10(𝔽73)
64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 9 | 9 | 65 | 65 | 71 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 8 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 64 | 0 | 8 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 65 | 72 | 72 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 9 | 65 | 65 | 72 | 71 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 64 | 0 | 8 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 64 | 0 | 8 |
0 | 0 | 41 | 14 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
32 | 59 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
47 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 17 | 49 | 63 | 14 | 7 |
0 | 0 | 0 | 0 | 0 | 7 | 0 | 7 | 7 | 66 |
0 | 0 | 0 | 0 | 56 | 70 | 17 | 10 | 66 | 59 |
0 | 0 | 0 | 0 | 63 | 70 | 10 | 17 | 59 | 66 |
0 | 0 | 0 | 0 | 17 | 24 | 66 | 49 | 53 | 63 |
0 | 0 | 0 | 0 | 7 | 7 | 3 | 0 | 46 | 49 |
0 | 0 | 32 | 59 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 47 | 41 | 0 | 0 | 0 | 0 | 0 | 0 |
32 | 59 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
47 | 41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 70 | 56 | 24 | 10 | 59 | 66 |
0 | 0 | 0 | 0 | 0 | 66 | 0 | 66 | 66 | 7 |
0 | 0 | 0 | 0 | 17 | 3 | 56 | 63 | 7 | 14 |
0 | 0 | 0 | 0 | 10 | 3 | 63 | 56 | 14 | 7 |
0 | 0 | 0 | 0 | 56 | 49 | 7 | 24 | 20 | 10 |
0 | 0 | 0 | 0 | 66 | 66 | 70 | 0 | 27 | 24 |
G:=sub<GL(10,GF(73))| [64,0,0,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,1,0,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,65,0,0,0,0,0,0,0,1,0,65,0,0,0,0,0,0,0,0,72,71,8,8,0,0,0,0,0,0,1,72,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,72,0,0,64,0,0,0,0,0,1,0,0,0,0,9,0,0,0,0,0,0,72,72,8,0,0,0,0,0,0,0,1,0,0,65,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,1,65,0,0,0,0,0,0,0,72,72,65,0,64,64,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,71,72,8,8],[0,0,32,47,0,0,0,0,0,0,0,0,59,0,0,0,0,0,0,0,41,26,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,56,63,17,7,0,0,0,0,17,7,70,70,24,7,0,0,0,0,49,0,17,10,66,3,0,0,0,0,63,7,10,17,49,0,0,0,0,0,14,7,66,59,53,46,0,0,0,0,7,66,59,66,63,49],[0,0,32,47,0,0,0,0,0,0,0,0,59,41,0,0,0,0,0,0,32,47,0,0,0,0,0,0,0,0,59,41,0,0,0,0,0,0,0,0,0,0,0,0,70,0,17,10,56,66,0,0,0,0,56,66,3,3,49,66,0,0,0,0,24,0,56,63,7,70,0,0,0,0,10,66,63,56,24,0,0,0,0,0,59,66,7,14,20,27,0,0,0,0,66,7,14,7,10,24] >;
He3⋊6D8 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_6D_8
% in TeX
G:=Group("He3:6D8");
// GroupNames label
G:=SmallGroup(432,153);
// by ID
G=gap.SmallGroup(432,153);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,1011,514,80,4037,2035,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,d*b*d^-1=e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations