Copied to
clipboard

G = He36D8order 432 = 24·33

1st semidirect product of He3 and D8 acting via D8/D4=C2

metabelian, supersoluble, monomial

Aliases: He36D8, C327D8⋊C3, C12.4(S3×C6), D4⋊(C32⋊C6), (D4×He3)⋊1C2, (C3×C12).9D6, C12⋊S32C6, C323(C3×D8), He33C84C2, He34D43C2, C324C82C6, (D4×C32)⋊1S3, (D4×C32)⋊1C6, C324(D4⋊S3), (C2×He3).28D4, C2.5(He36D4), (C4×He3).9C22, C3.2(C3×D4⋊S3), (C3×C12).2(C2×C6), (C3×D4).4(C3×S3), (C3×C6).13(C3×D4), C6.21(C3×C3⋊D4), C4.2(C2×C32⋊C6), (C3×C6).24(C3⋊D4), SmallGroup(432,153)

Series: Derived Chief Lower central Upper central

C1C3×C12 — He36D8
C1C3C32C3×C6C3×C12C4×He3He34D4 — He36D8
C32C3×C6C3×C12 — He36D8
C1C2C4D4

Generators and relations for He36D8
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, dbd-1=ebe=b-1, cd=dc, ce=ec, ede=d-1 >

Subgroups: 505 in 93 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, D4, C32, C32, C12, C12, D6, C2×C6, D8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, C3×D4, He3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C62, D4⋊S3, C3×D8, C32⋊C6, C2×He3, C2×He3, C3×C3⋊C8, C324C8, C3×D12, C12⋊S3, D4×C32, D4×C32, C4×He3, C2×C32⋊C6, C22×He3, C3×D4⋊S3, C327D8, He33C8, He34D4, D4×He3, He36D8
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, D8, C3×S3, C3⋊D4, C3×D4, S3×C6, D4⋊S3, C3×D8, C32⋊C6, C3×C3⋊D4, C2×C32⋊C6, C3×D4⋊S3, He36D4, He36D8

Smallest permutation representation of He36D8
On 72 points
Generators in S72
(1 68 56)(2 49 69)(3 70 50)(4 51 71)(5 72 52)(6 53 65)(7 66 54)(8 55 67)(9 57 37)(10 38 58)(11 59 39)(12 40 60)(13 61 33)(14 34 62)(15 63 35)(16 36 64)(17 48 29)(18 30 41)(19 42 31)(20 32 43)(21 44 25)(22 26 45)(23 46 27)(24 28 47)
(1 15 41)(2 42 16)(3 9 43)(4 44 10)(5 11 45)(6 46 12)(7 13 47)(8 48 14)(17 62 67)(18 68 63)(19 64 69)(20 70 57)(21 58 71)(22 72 59)(23 60 65)(24 66 61)(25 38 51)(26 52 39)(27 40 53)(28 54 33)(29 34 55)(30 56 35)(31 36 49)(32 50 37)
(1 68 35)(2 69 36)(3 70 37)(4 71 38)(5 72 39)(6 65 40)(7 66 33)(8 67 34)(9 57 32)(10 58 25)(11 59 26)(12 60 27)(13 61 28)(14 62 29)(15 63 30)(16 64 31)(17 55 48)(18 56 41)(19 49 42)(20 50 43)(21 51 44)(22 52 45)(23 53 46)(24 54 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(1 8)(2 7)(3 6)(4 5)(9 12)(10 11)(13 16)(14 15)(17 18)(19 24)(20 23)(21 22)(25 26)(27 32)(28 31)(29 30)(33 36)(34 35)(37 40)(38 39)(41 48)(42 47)(43 46)(44 45)(49 54)(50 53)(51 52)(55 56)(57 60)(58 59)(61 64)(62 63)(65 70)(66 69)(67 68)(71 72)

G:=sub<Sym(72)| (1,68,56)(2,49,69)(3,70,50)(4,51,71)(5,72,52)(6,53,65)(7,66,54)(8,55,67)(9,57,37)(10,38,58)(11,59,39)(12,40,60)(13,61,33)(14,34,62)(15,63,35)(16,36,64)(17,48,29)(18,30,41)(19,42,31)(20,32,43)(21,44,25)(22,26,45)(23,46,27)(24,28,47), (1,15,41)(2,42,16)(3,9,43)(4,44,10)(5,11,45)(6,46,12)(7,13,47)(8,48,14)(17,62,67)(18,68,63)(19,64,69)(20,70,57)(21,58,71)(22,72,59)(23,60,65)(24,66,61)(25,38,51)(26,52,39)(27,40,53)(28,54,33)(29,34,55)(30,56,35)(31,36,49)(32,50,37), (1,68,35)(2,69,36)(3,70,37)(4,71,38)(5,72,39)(6,65,40)(7,66,33)(8,67,34)(9,57,32)(10,58,25)(11,59,26)(12,60,27)(13,61,28)(14,62,29)(15,63,30)(16,64,31)(17,55,48)(18,56,41)(19,49,42)(20,50,43)(21,51,44)(22,52,45)(23,53,46)(24,54,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(17,18)(19,24)(20,23)(21,22)(25,26)(27,32)(28,31)(29,30)(33,36)(34,35)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,54)(50,53)(51,52)(55,56)(57,60)(58,59)(61,64)(62,63)(65,70)(66,69)(67,68)(71,72)>;

G:=Group( (1,68,56)(2,49,69)(3,70,50)(4,51,71)(5,72,52)(6,53,65)(7,66,54)(8,55,67)(9,57,37)(10,38,58)(11,59,39)(12,40,60)(13,61,33)(14,34,62)(15,63,35)(16,36,64)(17,48,29)(18,30,41)(19,42,31)(20,32,43)(21,44,25)(22,26,45)(23,46,27)(24,28,47), (1,15,41)(2,42,16)(3,9,43)(4,44,10)(5,11,45)(6,46,12)(7,13,47)(8,48,14)(17,62,67)(18,68,63)(19,64,69)(20,70,57)(21,58,71)(22,72,59)(23,60,65)(24,66,61)(25,38,51)(26,52,39)(27,40,53)(28,54,33)(29,34,55)(30,56,35)(31,36,49)(32,50,37), (1,68,35)(2,69,36)(3,70,37)(4,71,38)(5,72,39)(6,65,40)(7,66,33)(8,67,34)(9,57,32)(10,58,25)(11,59,26)(12,60,27)(13,61,28)(14,62,29)(15,63,30)(16,64,31)(17,55,48)(18,56,41)(19,49,42)(20,50,43)(21,51,44)(22,52,45)(23,53,46)(24,54,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,16)(14,15)(17,18)(19,24)(20,23)(21,22)(25,26)(27,32)(28,31)(29,30)(33,36)(34,35)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,54)(50,53)(51,52)(55,56)(57,60)(58,59)(61,64)(62,63)(65,70)(66,69)(67,68)(71,72) );

G=PermutationGroup([[(1,68,56),(2,49,69),(3,70,50),(4,51,71),(5,72,52),(6,53,65),(7,66,54),(8,55,67),(9,57,37),(10,38,58),(11,59,39),(12,40,60),(13,61,33),(14,34,62),(15,63,35),(16,36,64),(17,48,29),(18,30,41),(19,42,31),(20,32,43),(21,44,25),(22,26,45),(23,46,27),(24,28,47)], [(1,15,41),(2,42,16),(3,9,43),(4,44,10),(5,11,45),(6,46,12),(7,13,47),(8,48,14),(17,62,67),(18,68,63),(19,64,69),(20,70,57),(21,58,71),(22,72,59),(23,60,65),(24,66,61),(25,38,51),(26,52,39),(27,40,53),(28,54,33),(29,34,55),(30,56,35),(31,36,49),(32,50,37)], [(1,68,35),(2,69,36),(3,70,37),(4,71,38),(5,72,39),(6,65,40),(7,66,33),(8,67,34),(9,57,32),(10,58,25),(11,59,26),(12,60,27),(13,61,28),(14,62,29),(15,63,30),(16,64,31),(17,55,48),(18,56,41),(19,49,42),(20,50,43),(21,51,44),(22,52,45),(23,53,46),(24,54,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(1,8),(2,7),(3,6),(4,5),(9,12),(10,11),(13,16),(14,15),(17,18),(19,24),(20,23),(21,22),(25,26),(27,32),(28,31),(29,30),(33,36),(34,35),(37,40),(38,39),(41,48),(42,47),(43,46),(44,45),(49,54),(50,53),(51,52),(55,56),(57,60),(58,59),(61,64),(62,63),(65,70),(66,69),(67,68),(71,72)]])

41 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F 4 6A6B6C6D6E6F6G6H6I···6P6Q6R8A8B12A12B12C12D12E12F24A24B24C24D
order12223333334666666666···6668812121212121224242424
size1143623366622334466612···123636181846612121218181818

41 irreducible representations

dim1111111112222222222244666
type++++++++++++
imageC1C2C2C2C3C6C6C6He36D8S3D4D6D8C3×S3C3⋊D4C3×D4S3×C6C3×D8C3×C3⋊D4D4⋊S3C3×D4⋊S3C32⋊C6C2×C32⋊C6He36D4
kernelHe36D8He33C8He34D4D4×He3C327D8C324C8C12⋊S3D4×C32C1D4×C32C2×He3C3×C12He3C3×D4C3×C6C3×C6C12C32C6C32C3D4C4C2
# reps111122221111222224412112

Matrix representation of He36D8 in GL10(𝔽73)

64000000000
06400000000
0080000000
0008000000
0000001000
0000000100
00000000721
00009965657172
0000000080
0000100080
,
1000000000
0100000000
0010000000
0001000000
00007210000
00007200000
00000072100
00000072000
00006408001
0000090657272
,
1000000000
0100000000
0010000000
0001000000
00000007200
00000017200
00009965657271
00000000172
00000006408
00001006408
,
004114000000
00260000000
325900000000
47000000000
00003174963147
00000707766
0000567017106659
0000637010175966
0000172466495363
000077304649
,
003259000000
004741000000
325900000000
474100000000
0000705624105966
0000066066667
00001735663714
00001036356147
000056497242010
000066667002724

G:=sub<GL(10,GF(73))| [64,0,0,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,1,0,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,65,0,0,0,0,0,0,0,1,0,65,0,0,0,0,0,0,0,0,72,71,8,8,0,0,0,0,0,0,1,72,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,72,0,0,64,0,0,0,0,0,1,0,0,0,0,9,0,0,0,0,0,0,72,72,8,0,0,0,0,0,0,0,1,0,0,65,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,1,65,0,0,0,0,0,0,0,72,72,65,0,64,64,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,71,72,8,8],[0,0,32,47,0,0,0,0,0,0,0,0,59,0,0,0,0,0,0,0,41,26,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,56,63,17,7,0,0,0,0,17,7,70,70,24,7,0,0,0,0,49,0,17,10,66,3,0,0,0,0,63,7,10,17,49,0,0,0,0,0,14,7,66,59,53,46,0,0,0,0,7,66,59,66,63,49],[0,0,32,47,0,0,0,0,0,0,0,0,59,41,0,0,0,0,0,0,32,47,0,0,0,0,0,0,0,0,59,41,0,0,0,0,0,0,0,0,0,0,0,0,70,0,17,10,56,66,0,0,0,0,56,66,3,3,49,66,0,0,0,0,24,0,56,63,7,70,0,0,0,0,10,66,63,56,24,0,0,0,0,0,59,66,7,14,20,27,0,0,0,0,66,7,14,7,10,24] >;

He36D8 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_6D_8
% in TeX

G:=Group("He3:6D8");
// GroupNames label

G:=SmallGroup(432,153);
// by ID

G=gap.SmallGroup(432,153);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,1011,514,80,4037,2035,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,d*b*d^-1=e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽