Copied to
clipboard

G = D223order 446 = 2·223

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D223, C223⋊C2, sometimes denoted D446 or Dih223 or Dih446, SmallGroup(446,1)

Series: Derived Chief Lower central Upper central

C1C223 — D223
C1C223 — D223
C223 — D223
C1

Generators and relations for D223
 G = < a,b | a223=b2=1, bab=a-1 >

223C2

Smallest permutation representation of D223
On 223 points: primitive
Generators in S223
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223)
(1 223)(2 222)(3 221)(4 220)(5 219)(6 218)(7 217)(8 216)(9 215)(10 214)(11 213)(12 212)(13 211)(14 210)(15 209)(16 208)(17 207)(18 206)(19 205)(20 204)(21 203)(22 202)(23 201)(24 200)(25 199)(26 198)(27 197)(28 196)(29 195)(30 194)(31 193)(32 192)(33 191)(34 190)(35 189)(36 188)(37 187)(38 186)(39 185)(40 184)(41 183)(42 182)(43 181)(44 180)(45 179)(46 178)(47 177)(48 176)(49 175)(50 174)(51 173)(52 172)(53 171)(54 170)(55 169)(56 168)(57 167)(58 166)(59 165)(60 164)(61 163)(62 162)(63 161)(64 160)(65 159)(66 158)(67 157)(68 156)(69 155)(70 154)(71 153)(72 152)(73 151)(74 150)(75 149)(76 148)(77 147)(78 146)(79 145)(80 144)(81 143)(82 142)(83 141)(84 140)(85 139)(86 138)(87 137)(88 136)(89 135)(90 134)(91 133)(92 132)(93 131)(94 130)(95 129)(96 128)(97 127)(98 126)(99 125)(100 124)(101 123)(102 122)(103 121)(104 120)(105 119)(106 118)(107 117)(108 116)(109 115)(110 114)(111 113)

G:=sub<Sym(223)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223), (1,223)(2,222)(3,221)(4,220)(5,219)(6,218)(7,217)(8,216)(9,215)(10,214)(11,213)(12,212)(13,211)(14,210)(15,209)(16,208)(17,207)(18,206)(19,205)(20,204)(21,203)(22,202)(23,201)(24,200)(25,199)(26,198)(27,197)(28,196)(29,195)(30,194)(31,193)(32,192)(33,191)(34,190)(35,189)(36,188)(37,187)(38,186)(39,185)(40,184)(41,183)(42,182)(43,181)(44,180)(45,179)(46,178)(47,177)(48,176)(49,175)(50,174)(51,173)(52,172)(53,171)(54,170)(55,169)(56,168)(57,167)(58,166)(59,165)(60,164)(61,163)(62,162)(63,161)(64,160)(65,159)(66,158)(67,157)(68,156)(69,155)(70,154)(71,153)(72,152)(73,151)(74,150)(75,149)(76,148)(77,147)(78,146)(79,145)(80,144)(81,143)(82,142)(83,141)(84,140)(85,139)(86,138)(87,137)(88,136)(89,135)(90,134)(91,133)(92,132)(93,131)(94,130)(95,129)(96,128)(97,127)(98,126)(99,125)(100,124)(101,123)(102,122)(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223), (1,223)(2,222)(3,221)(4,220)(5,219)(6,218)(7,217)(8,216)(9,215)(10,214)(11,213)(12,212)(13,211)(14,210)(15,209)(16,208)(17,207)(18,206)(19,205)(20,204)(21,203)(22,202)(23,201)(24,200)(25,199)(26,198)(27,197)(28,196)(29,195)(30,194)(31,193)(32,192)(33,191)(34,190)(35,189)(36,188)(37,187)(38,186)(39,185)(40,184)(41,183)(42,182)(43,181)(44,180)(45,179)(46,178)(47,177)(48,176)(49,175)(50,174)(51,173)(52,172)(53,171)(54,170)(55,169)(56,168)(57,167)(58,166)(59,165)(60,164)(61,163)(62,162)(63,161)(64,160)(65,159)(66,158)(67,157)(68,156)(69,155)(70,154)(71,153)(72,152)(73,151)(74,150)(75,149)(76,148)(77,147)(78,146)(79,145)(80,144)(81,143)(82,142)(83,141)(84,140)(85,139)(86,138)(87,137)(88,136)(89,135)(90,134)(91,133)(92,132)(93,131)(94,130)(95,129)(96,128)(97,127)(98,126)(99,125)(100,124)(101,123)(102,122)(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223)], [(1,223),(2,222),(3,221),(4,220),(5,219),(6,218),(7,217),(8,216),(9,215),(10,214),(11,213),(12,212),(13,211),(14,210),(15,209),(16,208),(17,207),(18,206),(19,205),(20,204),(21,203),(22,202),(23,201),(24,200),(25,199),(26,198),(27,197),(28,196),(29,195),(30,194),(31,193),(32,192),(33,191),(34,190),(35,189),(36,188),(37,187),(38,186),(39,185),(40,184),(41,183),(42,182),(43,181),(44,180),(45,179),(46,178),(47,177),(48,176),(49,175),(50,174),(51,173),(52,172),(53,171),(54,170),(55,169),(56,168),(57,167),(58,166),(59,165),(60,164),(61,163),(62,162),(63,161),(64,160),(65,159),(66,158),(67,157),(68,156),(69,155),(70,154),(71,153),(72,152),(73,151),(74,150),(75,149),(76,148),(77,147),(78,146),(79,145),(80,144),(81,143),(82,142),(83,141),(84,140),(85,139),(86,138),(87,137),(88,136),(89,135),(90,134),(91,133),(92,132),(93,131),(94,130),(95,129),(96,128),(97,127),(98,126),(99,125),(100,124),(101,123),(102,122),(103,121),(104,120),(105,119),(106,118),(107,117),(108,116),(109,115),(110,114),(111,113)])

113 conjugacy classes

class 1  2 223A···223DG
order12223···223
size12232···2

113 irreducible representations

dim112
type+++
imageC1C2D223
kernelD223C223C1
# reps11111

Matrix representation of D223 in GL2(𝔽2677) generated by

18702676
10
,
18702676
737807
G:=sub<GL(2,GF(2677))| [1870,1,2676,0],[1870,737,2676,807] >;

D223 in GAP, Magma, Sage, TeX

D_{223}
% in TeX

G:=Group("D223");
// GroupNames label

G:=SmallGroup(446,1);
// by ID

G=gap.SmallGroup(446,1);
# by ID

G:=PCGroup([2,-2,-223,1777]);
// Polycyclic

G:=Group<a,b|a^223=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D223 in TeX

׿
×
𝔽