Home IrrRep Linear Cn Dn Sn An ...
About degree Characters × .

Extensions 1→N→G→Q→1 with N=C7×2+ (1+4) and Q=C2

Direct product G=N×Q with N=C7×2+ (1+4) and Q=C2
dρLabelID
C14×2+ (1+4)112C14xES+(2,2)448,1389

Semidirect products G=N:Q with N=C7×2+ (1+4) and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×2+ (1+4))⋊1C2 = 2+ (1+4)⋊D7φ: C2/C1C2 ⊆ Out C7×2+ (1+4)568+(C7xES+(2,2)):1C2448,775
(C7×2+ (1+4))⋊2C2 = D28.32C23φ: C2/C1C2 ⊆ Out C7×2+ (1+4)1128+(C7xES+(2,2)):2C2448,1288
(C7×2+ (1+4))⋊3C2 = D28.33C23φ: C2/C1C2 ⊆ Out C7×2+ (1+4)1128-(C7xES+(2,2)):3C2448,1289
(C7×2+ (1+4))⋊4C2 = D7×2+ (1+4)φ: C2/C1C2 ⊆ Out C7×2+ (1+4)568+(C7xES+(2,2)):4C2448,1379
(C7×2+ (1+4))⋊5C2 = D14.C24φ: C2/C1C2 ⊆ Out C7×2+ (1+4)1128-(C7xES+(2,2)):5C2448,1380
(C7×2+ (1+4))⋊6C2 = 2+ (1+4)2D7φ: C2/C1C2 ⊆ Out C7×2+ (1+4)568+(C7xES+(2,2)):6C2448,778
(C7×2+ (1+4))⋊7C2 = C7×D44D4φ: C2/C1C2 ⊆ Out C7×2+ (1+4)564(C7xES+(2,2)):7C2448,861
(C7×2+ (1+4))⋊8C2 = C7×C2≀C22φ: C2/C1C2 ⊆ Out C7×2+ (1+4)564(C7xES+(2,2)):8C2448,865
(C7×2+ (1+4))⋊9C2 = C7×D4○D8φ: C2/C1C2 ⊆ Out C7×2+ (1+4)1124(C7xES+(2,2)):9C2448,1359
(C7×2+ (1+4))⋊10C2 = C7×D4○SD16φ: C2/C1C2 ⊆ Out C7×2+ (1+4)1124(C7xES+(2,2)):10C2448,1360
(C7×2+ (1+4))⋊11C2 = C7×C2.C25φ: trivial image1124(C7xES+(2,2)):11C2448,1391

Non-split extensions G=N.Q with N=C7×2+ (1+4) and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×2+ (1+4)).1C2 = 2+ (1+4).D7φ: C2/C1C2 ⊆ Out C7×2+ (1+4)1128-(C7xES+(2,2)).1C2448,776
(C7×2+ (1+4)).2C2 = 2+ (1+4).2D7φ: C2/C1C2 ⊆ Out C7×2+ (1+4)1128-(C7xES+(2,2)).2C2448,777
(C7×2+ (1+4)).3C2 = C7×D4.9D4φ: C2/C1C2 ⊆ Out C7×2+ (1+4)1124(C7xES+(2,2)).3C2448,863
(C7×2+ (1+4)).4C2 = C7×C23.7D4φ: C2/C1C2 ⊆ Out C7×2+ (1+4)1124(C7xES+(2,2)).4C2448,866

׿
×
𝔽