Copied to
clipboard

G = C7×D44D4order 448 = 26·7

Direct product of C7 and D44D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×D44D4, 2+ 1+41C14, D44(C7×D4), C4≀C21C14, Q84(C7×D4), (C7×D4)⋊22D4, (C7×Q8)⋊22D4, C41D41C14, C8⋊C221C14, C422(C2×C14), C4.27(D4×C14), C23.5(C7×D4), (C4×C28)⋊35C22, C4.D41C14, C28.388(C2×D4), (C22×C14).5D4, (D4×C14)⋊28C22, M4(2)⋊1(C2×C14), C22.14(D4×C14), C14.100C22≀C2, (C2×C28).609C23, (C7×2+ 1+4)⋊7C2, (C7×M4(2))⋊17C22, (C7×C4≀C2)⋊9C2, (C2×D4)⋊2(C2×C14), (C7×C8⋊C22)⋊8C2, (C7×C41D4)⋊11C2, C4○D4.1(C2×C14), (C7×C4.D4)⋊7C2, C2.14(C7×C22≀C2), (C2×C14).409(C2×D4), (C2×C4).4(C22×C14), (C7×C4○D4).31C22, SmallGroup(448,861)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C7×D44D4
C1C2C22C2×C4C2×C28D4×C14C7×C8⋊C22 — C7×D44D4
C1C2C2×C4 — C7×D44D4
C1C14C2×C28 — C7×D44D4

Generators and relations for C7×D44D4
 G = < a,b,c,d,e | a7=b4=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=b-1c, ece=bc, ede=d-1 >

Subgroups: 370 in 168 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C14, C14, C42, M4(2), D8, SD16, C2×D4, C2×D4, C4○D4, C4○D4, C28, C28, C2×C14, C2×C14, C4.D4, C4≀C2, C41D4, C8⋊C22, 2+ 1+4, C56, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C22×C14, C22×C14, D44D4, C4×C28, C7×M4(2), C7×D8, C7×SD16, D4×C14, D4×C14, C7×C4○D4, C7×C4○D4, C7×C4.D4, C7×C4≀C2, C7×C41D4, C7×C8⋊C22, C7×2+ 1+4, C7×D44D4
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C2×C14, C22≀C2, C7×D4, C22×C14, D44D4, D4×C14, C7×C22≀C2, C7×D44D4

Smallest permutation representation of C7×D44D4
On 56 points
Generators in S56
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 43 35 38)(2 44 29 39)(3 45 30 40)(4 46 31 41)(5 47 32 42)(6 48 33 36)(7 49 34 37)(8 23 21 56)(9 24 15 50)(10 25 16 51)(11 26 17 52)(12 27 18 53)(13 28 19 54)(14 22 20 55)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 22)(7 23)(8 49)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 38)(16 39)(17 40)(18 41)(19 42)(20 36)(21 37)(29 51)(30 52)(31 53)(32 54)(33 55)(34 56)(35 50)
(1 35)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 23 21 56)(9 24 15 50)(10 25 16 51)(11 26 17 52)(12 27 18 53)(13 28 19 54)(14 22 20 55)(36 48)(37 49)(38 43)(39 44)(40 45)(41 46)(42 47)
(1 38)(2 39)(3 40)(4 41)(5 42)(6 36)(7 37)(8 21)(9 15)(10 16)(11 17)(12 18)(13 19)(14 20)(29 44)(30 45)(31 46)(32 47)(33 48)(34 49)(35 43)

G:=sub<Sym(56)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,43,35,38)(2,44,29,39)(3,45,30,40)(4,46,31,41)(5,47,32,42)(6,48,33,36)(7,49,34,37)(8,23,21,56)(9,24,15,50)(10,25,16,51)(11,26,17,52)(12,27,18,53)(13,28,19,54)(14,22,20,55), (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,49)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,38)(16,39)(17,40)(18,41)(19,42)(20,36)(21,37)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,50), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,23,21,56)(9,24,15,50)(10,25,16,51)(11,26,17,52)(12,27,18,53)(13,28,19,54)(14,22,20,55)(36,48)(37,49)(38,43)(39,44)(40,45)(41,46)(42,47), (1,38)(2,39)(3,40)(4,41)(5,42)(6,36)(7,37)(8,21)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,43)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,43,35,38)(2,44,29,39)(3,45,30,40)(4,46,31,41)(5,47,32,42)(6,48,33,36)(7,49,34,37)(8,23,21,56)(9,24,15,50)(10,25,16,51)(11,26,17,52)(12,27,18,53)(13,28,19,54)(14,22,20,55), (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,49)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,38)(16,39)(17,40)(18,41)(19,42)(20,36)(21,37)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,50), (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,23,21,56)(9,24,15,50)(10,25,16,51)(11,26,17,52)(12,27,18,53)(13,28,19,54)(14,22,20,55)(36,48)(37,49)(38,43)(39,44)(40,45)(41,46)(42,47), (1,38)(2,39)(3,40)(4,41)(5,42)(6,36)(7,37)(8,21)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,43) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,43,35,38),(2,44,29,39),(3,45,30,40),(4,46,31,41),(5,47,32,42),(6,48,33,36),(7,49,34,37),(8,23,21,56),(9,24,15,50),(10,25,16,51),(11,26,17,52),(12,27,18,53),(13,28,19,54),(14,22,20,55)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,22),(7,23),(8,49),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,38),(16,39),(17,40),(18,41),(19,42),(20,36),(21,37),(29,51),(30,52),(31,53),(32,54),(33,55),(34,56),(35,50)], [(1,35),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,23,21,56),(9,24,15,50),(10,25,16,51),(11,26,17,52),(12,27,18,53),(13,28,19,54),(14,22,20,55),(36,48),(37,49),(38,43),(39,44),(40,45),(41,46),(42,47)], [(1,38),(2,39),(3,40),(4,41),(5,42),(6,36),(7,37),(8,21),(9,15),(10,16),(11,17),(12,18),(13,19),(14,20),(29,44),(30,45),(31,46),(32,47),(33,48),(34,49),(35,43)]])

112 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F7A···7F8A8B14A···14F14G···14L14M···14AJ14AK···14AP28A···28L28M···28AJ56A···56L
order122222224444447···78814···1414···1414···1414···1428···2828···2856···56
size112444482244441···1881···12···24···48···82···24···48···8

112 irreducible representations

dim11111111111122222244
type++++++++++
imageC1C2C2C2C2C2C7C14C14C14C14C14D4D4D4C7×D4C7×D4C7×D4D44D4C7×D44D4
kernelC7×D44D4C7×C4.D4C7×C4≀C2C7×C41D4C7×C8⋊C22C7×2+ 1+4D44D4C4.D4C4≀C2C41D4C8⋊C222+ 1+4C7×D4C7×Q8C22×C14D4Q8C23C7C1
# reps11212166126126222121212212

Matrix representation of C7×D44D4 in GL4(𝔽113) generated by

30000
03000
00300
00030
,
012750
11201436
001121
001111
,
860088
990193
11077
20027
,
11202786
01121499
001121
001111
,
01050
10063
001121
0001
G:=sub<GL(4,GF(113))| [30,0,0,0,0,30,0,0,0,0,30,0,0,0,0,30],[0,112,0,0,1,0,0,0,27,14,112,111,50,36,1,1],[86,99,1,2,0,0,1,0,0,1,0,0,88,93,77,27],[112,0,0,0,0,112,0,0,27,14,112,111,86,99,1,1],[0,1,0,0,1,0,0,0,0,0,112,0,50,63,1,1] >;

C7×D44D4 in GAP, Magma, Sage, TeX

C_7\times D_4\rtimes_4D_4
% in TeX

G:=Group("C7xD4:4D4");
// GroupNames label

G:=SmallGroup(448,861);
// by ID

G=gap.SmallGroup(448,861);
# by ID

G:=PCGroup([7,-2,-2,-2,-7,-2,-2,-2,813,2438,9804,4911,2468,172,7068]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^4=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=b^-1*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽