Copied to
clipboard

G = C7×D4.9D4order 448 = 26·7

Direct product of C7 and D4.9D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×D4.9D4, 2+ 1+4.1C14, C4≀C23C14, D4.9(C7×D4), Q8.9(C7×D4), C423(C2×C14), (C7×D4).43D4, C4.29(D4×C14), (C7×Q8).43D4, C23.6(C7×D4), (C4×C28)⋊36C22, C4.D42C14, C28.390(C2×D4), C4.4D42C14, C8.C221C14, (C22×C14).6D4, M4(2)⋊2(C2×C14), (Q8×C14)⋊27C22, C22.16(D4×C14), C14.102C22≀C2, (C2×C28).611C23, (D4×C14).182C22, (C7×M4(2))⋊18C22, (C7×2+ 1+4).3C2, (C7×C4≀C2)⋊11C2, (C2×Q8)⋊2(C2×C14), C4○D4.3(C2×C14), (C2×D4).7(C2×C14), (C7×C4.D4)⋊8C2, (C7×C8.C22)⋊8C2, C2.16(C7×C22≀C2), (C2×C14).411(C2×D4), (C7×C4.4D4)⋊22C2, (C2×C4).6(C22×C14), (C7×C4○D4).33C22, SmallGroup(448,863)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C7×D4.9D4
C1C2C22C2×C4C2×C28Q8×C14C7×C8.C22 — C7×D4.9D4
C1C2C2×C4 — C7×D4.9D4
C1C14C2×C28 — C7×D4.9D4

Generators and relations for C7×D4.9D4
 G = < a,b,c,d,e | a7=b4=c2=d4=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, dcd-1=b-1c, ece-1=bc, ede-1=b2d-1 >

Subgroups: 306 in 152 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C14, C14, C42, C22⋊C4, M4(2), SD16, Q16, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C28, C28, C2×C14, C2×C14, C4.D4, C4≀C2, C4.4D4, C8.C22, 2+ 1+4, C56, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, C22×C14, C22×C14, D4.9D4, C4×C28, C7×C22⋊C4, C7×M4(2), C7×SD16, C7×Q16, D4×C14, D4×C14, Q8×C14, C7×C4○D4, C7×C4○D4, C7×C4.D4, C7×C4≀C2, C7×C4.4D4, C7×C8.C22, C7×2+ 1+4, C7×D4.9D4
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C2×C14, C22≀C2, C7×D4, C22×C14, D4.9D4, D4×C14, C7×C22≀C2, C7×D4.9D4

Smallest permutation representation of C7×D4.9D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 47 35 39)(2 48 29 40)(3 49 30 41)(4 43 31 42)(5 44 32 36)(6 45 33 37)(7 46 34 38)(8 112 18 23)(9 106 19 24)(10 107 20 25)(11 108 21 26)(12 109 15 27)(13 110 16 28)(14 111 17 22)(50 63 75 66)(51 57 76 67)(52 58 77 68)(53 59 71 69)(54 60 72 70)(55 61 73 64)(56 62 74 65)(78 91 103 94)(79 85 104 95)(80 86 105 96)(81 87 99 97)(82 88 100 98)(83 89 101 92)(84 90 102 93)
(1 103)(2 104)(3 105)(4 99)(5 100)(6 101)(7 102)(8 56)(9 50)(10 51)(11 52)(12 53)(13 54)(14 55)(15 71)(16 72)(17 73)(18 74)(19 75)(20 76)(21 77)(22 61)(23 62)(24 63)(25 57)(26 58)(27 59)(28 60)(29 79)(30 80)(31 81)(32 82)(33 83)(34 84)(35 78)(36 98)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 87)(44 88)(45 89)(46 90)(47 91)(48 85)(49 86)(64 111)(65 112)(66 106)(67 107)(68 108)(69 109)(70 110)
(8 112 18 23)(9 106 19 24)(10 107 20 25)(11 108 21 26)(12 109 15 27)(13 110 16 28)(14 111 17 22)(50 75)(51 76)(52 77)(53 71)(54 72)(55 73)(56 74)(57 67)(58 68)(59 69)(60 70)(61 64)(62 65)(63 66)(78 94 103 91)(79 95 104 85)(80 96 105 86)(81 97 99 87)(82 98 100 88)(83 92 101 89)(84 93 102 90)
(1 66 35 63)(2 67 29 57)(3 68 30 58)(4 69 31 59)(5 70 32 60)(6 64 33 61)(7 65 34 62)(8 84 18 102)(9 78 19 103)(10 79 20 104)(11 80 21 105)(12 81 15 99)(13 82 16 100)(14 83 17 101)(22 89 111 92)(23 90 112 93)(24 91 106 94)(25 85 107 95)(26 86 108 96)(27 87 109 97)(28 88 110 98)(36 54 44 72)(37 55 45 73)(38 56 46 74)(39 50 47 75)(40 51 48 76)(41 52 49 77)(42 53 43 71)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,47,35,39)(2,48,29,40)(3,49,30,41)(4,43,31,42)(5,44,32,36)(6,45,33,37)(7,46,34,38)(8,112,18,23)(9,106,19,24)(10,107,20,25)(11,108,21,26)(12,109,15,27)(13,110,16,28)(14,111,17,22)(50,63,75,66)(51,57,76,67)(52,58,77,68)(53,59,71,69)(54,60,72,70)(55,61,73,64)(56,62,74,65)(78,91,103,94)(79,85,104,95)(80,86,105,96)(81,87,99,97)(82,88,100,98)(83,89,101,92)(84,90,102,93), (1,103)(2,104)(3,105)(4,99)(5,100)(6,101)(7,102)(8,56)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,61)(23,62)(24,63)(25,57)(26,58)(27,59)(28,60)(29,79)(30,80)(31,81)(32,82)(33,83)(34,84)(35,78)(36,98)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,87)(44,88)(45,89)(46,90)(47,91)(48,85)(49,86)(64,111)(65,112)(66,106)(67,107)(68,108)(69,109)(70,110), (8,112,18,23)(9,106,19,24)(10,107,20,25)(11,108,21,26)(12,109,15,27)(13,110,16,28)(14,111,17,22)(50,75)(51,76)(52,77)(53,71)(54,72)(55,73)(56,74)(57,67)(58,68)(59,69)(60,70)(61,64)(62,65)(63,66)(78,94,103,91)(79,95,104,85)(80,96,105,86)(81,97,99,87)(82,98,100,88)(83,92,101,89)(84,93,102,90), (1,66,35,63)(2,67,29,57)(3,68,30,58)(4,69,31,59)(5,70,32,60)(6,64,33,61)(7,65,34,62)(8,84,18,102)(9,78,19,103)(10,79,20,104)(11,80,21,105)(12,81,15,99)(13,82,16,100)(14,83,17,101)(22,89,111,92)(23,90,112,93)(24,91,106,94)(25,85,107,95)(26,86,108,96)(27,87,109,97)(28,88,110,98)(36,54,44,72)(37,55,45,73)(38,56,46,74)(39,50,47,75)(40,51,48,76)(41,52,49,77)(42,53,43,71)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,47,35,39)(2,48,29,40)(3,49,30,41)(4,43,31,42)(5,44,32,36)(6,45,33,37)(7,46,34,38)(8,112,18,23)(9,106,19,24)(10,107,20,25)(11,108,21,26)(12,109,15,27)(13,110,16,28)(14,111,17,22)(50,63,75,66)(51,57,76,67)(52,58,77,68)(53,59,71,69)(54,60,72,70)(55,61,73,64)(56,62,74,65)(78,91,103,94)(79,85,104,95)(80,86,105,96)(81,87,99,97)(82,88,100,98)(83,89,101,92)(84,90,102,93), (1,103)(2,104)(3,105)(4,99)(5,100)(6,101)(7,102)(8,56)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,61)(23,62)(24,63)(25,57)(26,58)(27,59)(28,60)(29,79)(30,80)(31,81)(32,82)(33,83)(34,84)(35,78)(36,98)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,87)(44,88)(45,89)(46,90)(47,91)(48,85)(49,86)(64,111)(65,112)(66,106)(67,107)(68,108)(69,109)(70,110), (8,112,18,23)(9,106,19,24)(10,107,20,25)(11,108,21,26)(12,109,15,27)(13,110,16,28)(14,111,17,22)(50,75)(51,76)(52,77)(53,71)(54,72)(55,73)(56,74)(57,67)(58,68)(59,69)(60,70)(61,64)(62,65)(63,66)(78,94,103,91)(79,95,104,85)(80,96,105,86)(81,97,99,87)(82,98,100,88)(83,92,101,89)(84,93,102,90), (1,66,35,63)(2,67,29,57)(3,68,30,58)(4,69,31,59)(5,70,32,60)(6,64,33,61)(7,65,34,62)(8,84,18,102)(9,78,19,103)(10,79,20,104)(11,80,21,105)(12,81,15,99)(13,82,16,100)(14,83,17,101)(22,89,111,92)(23,90,112,93)(24,91,106,94)(25,85,107,95)(26,86,108,96)(27,87,109,97)(28,88,110,98)(36,54,44,72)(37,55,45,73)(38,56,46,74)(39,50,47,75)(40,51,48,76)(41,52,49,77)(42,53,43,71) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,47,35,39),(2,48,29,40),(3,49,30,41),(4,43,31,42),(5,44,32,36),(6,45,33,37),(7,46,34,38),(8,112,18,23),(9,106,19,24),(10,107,20,25),(11,108,21,26),(12,109,15,27),(13,110,16,28),(14,111,17,22),(50,63,75,66),(51,57,76,67),(52,58,77,68),(53,59,71,69),(54,60,72,70),(55,61,73,64),(56,62,74,65),(78,91,103,94),(79,85,104,95),(80,86,105,96),(81,87,99,97),(82,88,100,98),(83,89,101,92),(84,90,102,93)], [(1,103),(2,104),(3,105),(4,99),(5,100),(6,101),(7,102),(8,56),(9,50),(10,51),(11,52),(12,53),(13,54),(14,55),(15,71),(16,72),(17,73),(18,74),(19,75),(20,76),(21,77),(22,61),(23,62),(24,63),(25,57),(26,58),(27,59),(28,60),(29,79),(30,80),(31,81),(32,82),(33,83),(34,84),(35,78),(36,98),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,87),(44,88),(45,89),(46,90),(47,91),(48,85),(49,86),(64,111),(65,112),(66,106),(67,107),(68,108),(69,109),(70,110)], [(8,112,18,23),(9,106,19,24),(10,107,20,25),(11,108,21,26),(12,109,15,27),(13,110,16,28),(14,111,17,22),(50,75),(51,76),(52,77),(53,71),(54,72),(55,73),(56,74),(57,67),(58,68),(59,69),(60,70),(61,64),(62,65),(63,66),(78,94,103,91),(79,95,104,85),(80,96,105,86),(81,97,99,87),(82,98,100,88),(83,92,101,89),(84,93,102,90)], [(1,66,35,63),(2,67,29,57),(3,68,30,58),(4,69,31,59),(5,70,32,60),(6,64,33,61),(7,65,34,62),(8,84,18,102),(9,78,19,103),(10,79,20,104),(11,80,21,105),(12,81,15,99),(13,82,16,100),(14,83,17,101),(22,89,111,92),(23,90,112,93),(24,91,106,94),(25,85,107,95),(26,86,108,96),(27,87,109,97),(28,88,110,98),(36,54,44,72),(37,55,45,73),(38,56,46,74),(39,50,47,75),(40,51,48,76),(41,52,49,77),(42,53,43,71)]])

112 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G7A···7F8A8B14A···14F14G···14L14M···14AJ28A···28L28M···28AJ28AK···28AP56A···56L
order122222244444447···78814···1414···1414···1428···2828···2828···2856···56
size112444422444481···1881···12···24···42···24···48···88···8

112 irreducible representations

dim11111111111122222244
type+++++++++
imageC1C2C2C2C2C2C7C14C14C14C14C14D4D4D4C7×D4C7×D4C7×D4D4.9D4C7×D4.9D4
kernelC7×D4.9D4C7×C4.D4C7×C4≀C2C7×C4.4D4C7×C8.C22C7×2+ 1+4D4.9D4C4.D4C4≀C2C4.4D4C8.C222+ 1+4C7×D4C7×Q8C22×C14D4Q8C23C7C1
# reps11212166126126222121212212

Matrix representation of C7×D4.9D4 in GL4(𝔽113) generated by

49000
04900
00490
00049
,
15000
159800
00980
009815
,
00980
009815
15000
159800
,
1000
111200
00150
00015
,
112200
112100
001583
00098
G:=sub<GL(4,GF(113))| [49,0,0,0,0,49,0,0,0,0,49,0,0,0,0,49],[15,15,0,0,0,98,0,0,0,0,98,98,0,0,0,15],[0,0,15,15,0,0,0,98,98,98,0,0,0,15,0,0],[1,1,0,0,0,112,0,0,0,0,15,0,0,0,0,15],[112,112,0,0,2,1,0,0,0,0,15,0,0,0,83,98] >;

C7×D4.9D4 in GAP, Magma, Sage, TeX

C_7\times D_4._9D_4
% in TeX

G:=Group("C7xD4.9D4");
// GroupNames label

G:=SmallGroup(448,863);
// by ID

G=gap.SmallGroup(448,863);
# by ID

G:=PCGroup([7,-2,-2,-2,-7,-2,-2,-2,1568,813,2438,9804,4911,2468,172,7068]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^4=c^2=d^4=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c,e*c*e^-1=b*c,e*d*e^-1=b^2*d^-1>;
// generators/relations

׿
×
𝔽