Copied to
clipboard

G = 2+ 1+42D7order 448 = 26·7

2nd semidirect product of 2+ 1+4 and D7 acting via D7/C7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: 2+ 1+42D7, C73C2≀C22, (C2×C28)⋊3D4, (C22×C14)⋊4D4, (C2×D4).85D14, C232(C7⋊D4), C23⋊D1419C2, C14.83C22≀C2, C23⋊Dic710C2, (C23×D7)⋊2C22, C23.D77C22, C23.6(C22×D7), (C22×C14).6C23, (C7×2+ 1+4)⋊6C2, (D4×C14).179C22, C2.17(C24⋊D7), (C2×C4)⋊2(C7⋊D4), (C2×C14).45(C2×D4), C22.17(C2×C7⋊D4), SmallGroup(448,778)

Series: Derived Chief Lower central Upper central

C1C22×C14 — 2+ 1+42D7
C1C7C14C2×C14C22×C14C23×D7C23⋊D14 — 2+ 1+42D7
C7C14C22×C14 — 2+ 1+42D7
C1C2C232+ 1+4

Generators and relations for 2+ 1+42D7
 G = < a,b,c,d,e,f | a4=b2=d2=e7=f2=1, c2=a2, bab=a-1, ac=ca, ad=da, ae=ea, faf=a-1cd, fcf=bc=cb, fdf=bd=db, be=eb, bf=fb, dcd=a2c, ce=ec, de=ed, fef=e-1 >

Subgroups: 1140 in 198 conjugacy classes, 43 normal (10 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D7, C14, C14, C22⋊C4, C2×D4, C2×D4, C4○D4, C24, Dic7, C28, D14, C2×C14, C2×C14, C23⋊C4, C22≀C2, 2+ 1+4, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×Q8, C22×D7, C22×C14, C22×C14, C22×C14, C2≀C22, D14⋊C4, C23.D7, C2×C7⋊D4, D4×C14, D4×C14, C7×C4○D4, C23×D7, C23⋊Dic7, C23⋊D14, C7×2+ 1+4, 2+ 1+42D7
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, C7⋊D4, C22×D7, C2≀C22, C2×C7⋊D4, C24⋊D7, 2+ 1+42D7

Smallest permutation representation of 2+ 1+42D7
On 56 points
Generators in S56
(1 48 13 55)(2 49 14 56)(3 43 8 50)(4 44 9 51)(5 45 10 52)(6 46 11 53)(7 47 12 54)(15 29 22 36)(16 30 23 37)(17 31 24 38)(18 32 25 39)(19 33 26 40)(20 34 27 41)(21 35 28 42)
(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 27 13 20)(2 28 14 21)(3 22 8 15)(4 23 9 16)(5 24 10 17)(6 25 11 18)(7 26 12 19)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 45)(30 44)(31 43)(32 49)(33 48)(34 47)(35 46)(36 52)(37 51)(38 50)(39 56)(40 55)(41 54)(42 53)

G:=sub<Sym(56)| (1,48,13,55)(2,49,14,56)(3,43,8,50)(4,44,9,51)(5,45,10,52)(6,46,11,53)(7,47,12,54)(15,29,22,36)(16,30,23,37)(17,31,24,38)(18,32,25,39)(19,33,26,40)(20,34,27,41)(21,35,28,42), (29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,27,13,20)(2,28,14,21)(3,22,8,15)(4,23,9,16)(5,24,10,17)(6,25,11,18)(7,26,12,19)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,45)(30,44)(31,43)(32,49)(33,48)(34,47)(35,46)(36,52)(37,51)(38,50)(39,56)(40,55)(41,54)(42,53)>;

G:=Group( (1,48,13,55)(2,49,14,56)(3,43,8,50)(4,44,9,51)(5,45,10,52)(6,46,11,53)(7,47,12,54)(15,29,22,36)(16,30,23,37)(17,31,24,38)(18,32,25,39)(19,33,26,40)(20,34,27,41)(21,35,28,42), (29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,27,13,20)(2,28,14,21)(3,22,8,15)(4,23,9,16)(5,24,10,17)(6,25,11,18)(7,26,12,19)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,45)(30,44)(31,43)(32,49)(33,48)(34,47)(35,46)(36,52)(37,51)(38,50)(39,56)(40,55)(41,54)(42,53) );

G=PermutationGroup([[(1,48,13,55),(2,49,14,56),(3,43,8,50),(4,44,9,51),(5,45,10,52),(6,46,11,53),(7,47,12,54),(15,29,22,36),(16,30,23,37),(17,31,24,38),(18,32,25,39),(19,33,26,40),(20,34,27,41),(21,35,28,42)], [(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,27,13,20),(2,28,14,21),(3,22,8,15),(4,23,9,16),(5,24,10,17),(6,25,11,18),(7,26,12,19),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,45),(30,44),(31,43),(32,49),(33,48),(34,47),(35,46),(36,52),(37,51),(38,50),(39,56),(40,55),(41,54),(42,53)]])

67 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F7A7B7C14A14B14C14D···14AD28A···28R
order122222222244444477714141414···1428···28
size1122244428284445656562222224···44···4

67 irreducible representations

dim111122222248
type++++++++++
imageC1C2C2C2D4D4D7D14C7⋊D4C7⋊D4C2≀C222+ 1+42D7
kernel2+ 1+42D7C23⋊Dic7C23⋊D14C7×2+ 1+4C2×C28C22×C142+ 1+4C2×D4C2×C4C23C7C1
# reps13313339181823

Matrix representation of 2+ 1+42D7 in GL6(𝔽29)

100000
0280000
0010016
0000281
00181028
00180028
,
2800000
0280000
001000
000100
00180280
00180028
,
100000
0280000
0011300
00112800
00181028
000110
,
2800000
010000
0028000
0018100
0011010
0000028
,
2500000
070000
001000
000100
000010
000001
,
0160000
2000000
0028000
0002800
0000028
0000280

G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,18,18,0,0,0,0,1,0,0,0,0,28,0,0,0,0,16,1,28,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,18,18,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,28,0,0,0,0,0,0,1,11,18,0,0,0,13,28,1,1,0,0,0,0,0,1,0,0,0,0,28,0],[28,0,0,0,0,0,0,1,0,0,0,0,0,0,28,18,11,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28],[25,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,20,0,0,0,0,16,0,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,0,28,0,0,0,0,28,0] >;

2+ 1+42D7 in GAP, Magma, Sage, TeX

2_+^{1+4}\rtimes_2D_7
% in TeX

G:=Group("ES+(2,2):2D7");
// GroupNames label

G:=SmallGroup(448,778);
// by ID

G=gap.SmallGroup(448,778);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,254,570,438,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=b^2=d^2=e^7=f^2=1,c^2=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f=a^-1*c*d,f*c*f=b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=a^2*c,c*e=e*c,d*e=e*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽