direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C4×F8, C24⋊C28, C25.C14, (C24×C4)⋊C7, C23⋊(C2×C28), C22.(C2×F8), (C22×F8).C2, (C23×C4)⋊2C14, C2.1(C22×F8), C24.1(C2×C14), (C2×F8).1C22, SmallGroup(448,1362)
Series: Derived ►Chief ►Lower central ►Upper central
C23 — C2×C4×F8 |
Subgroups: 753 in 127 conjugacy classes, 24 normal (12 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×2], C22, C22 [×22], C7, C2×C4, C2×C4 [×17], C23, C23 [×22], C14 [×3], C22×C4 [×20], C24, C24 [×2], C24 [×4], C28 [×2], C2×C14, C23×C4 [×2], C23×C4 [×4], C25, C2×C28, F8, C24×C4, C2×F8, C2×F8 [×2], C4×F8 [×2], C22×F8, C2×C4×F8
Quotients:
C1, C2 [×3], C4 [×2], C22, C7, C2×C4, C14 [×3], C28 [×2], C2×C14, C2×C28, F8, C2×F8 [×3], C4×F8 [×2], C22×F8, C2×C4×F8
Generators and relations
G = < a,b,c,d,e,f | a2=b4=c2=d2=e2=f7=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, fcf-1=ed=de, fdf-1=c, fef-1=d >
(1 35)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 18)(9 19)(10 20)(11 21)(12 15)(13 16)(14 17)(22 55)(23 56)(24 50)(25 51)(26 52)(27 53)(28 54)(36 44)(37 45)(38 46)(39 47)(40 48)(41 49)(42 43)
(1 19 47 24)(2 20 48 25)(3 21 49 26)(4 15 43 27)(5 16 44 28)(6 17 45 22)(7 18 46 23)(8 38 56 34)(9 39 50 35)(10 40 51 29)(11 41 52 30)(12 42 53 31)(13 36 54 32)(14 37 55 33)
(1 39)(2 48)(3 30)(4 31)(5 36)(7 46)(8 56)(9 24)(10 51)(11 21)(12 15)(13 28)(16 54)(18 23)(19 50)(20 25)(26 52)(27 53)(29 40)(32 44)(34 38)(35 47)(41 49)(42 43)
(1 47)(2 40)(3 49)(4 31)(5 32)(6 37)(9 50)(10 25)(11 52)(12 15)(13 16)(14 22)(17 55)(19 24)(20 51)(21 26)(27 53)(28 54)(29 48)(30 41)(33 45)(35 39)(36 44)(42 43)
(2 48)(3 41)(4 43)(5 32)(6 33)(7 38)(8 23)(10 51)(11 26)(12 53)(13 16)(14 17)(15 27)(18 56)(20 25)(21 52)(22 55)(28 54)(29 40)(30 49)(31 42)(34 46)(36 44)(37 45)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
G:=sub<Sym(56)| (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,18)(9,19)(10,20)(11,21)(12,15)(13,16)(14,17)(22,55)(23,56)(24,50)(25,51)(26,52)(27,53)(28,54)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,43), (1,19,47,24)(2,20,48,25)(3,21,49,26)(4,15,43,27)(5,16,44,28)(6,17,45,22)(7,18,46,23)(8,38,56,34)(9,39,50,35)(10,40,51,29)(11,41,52,30)(12,42,53,31)(13,36,54,32)(14,37,55,33), (1,39)(2,48)(3,30)(4,31)(5,36)(7,46)(8,56)(9,24)(10,51)(11,21)(12,15)(13,28)(16,54)(18,23)(19,50)(20,25)(26,52)(27,53)(29,40)(32,44)(34,38)(35,47)(41,49)(42,43), (1,47)(2,40)(3,49)(4,31)(5,32)(6,37)(9,50)(10,25)(11,52)(12,15)(13,16)(14,22)(17,55)(19,24)(20,51)(21,26)(27,53)(28,54)(29,48)(30,41)(33,45)(35,39)(36,44)(42,43), (2,48)(3,41)(4,43)(5,32)(6,33)(7,38)(8,23)(10,51)(11,26)(12,53)(13,16)(14,17)(15,27)(18,56)(20,25)(21,52)(22,55)(28,54)(29,40)(30,49)(31,42)(34,46)(36,44)(37,45), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)>;
G:=Group( (1,35)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,18)(9,19)(10,20)(11,21)(12,15)(13,16)(14,17)(22,55)(23,56)(24,50)(25,51)(26,52)(27,53)(28,54)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,43), (1,19,47,24)(2,20,48,25)(3,21,49,26)(4,15,43,27)(5,16,44,28)(6,17,45,22)(7,18,46,23)(8,38,56,34)(9,39,50,35)(10,40,51,29)(11,41,52,30)(12,42,53,31)(13,36,54,32)(14,37,55,33), (1,39)(2,48)(3,30)(4,31)(5,36)(7,46)(8,56)(9,24)(10,51)(11,21)(12,15)(13,28)(16,54)(18,23)(19,50)(20,25)(26,52)(27,53)(29,40)(32,44)(34,38)(35,47)(41,49)(42,43), (1,47)(2,40)(3,49)(4,31)(5,32)(6,37)(9,50)(10,25)(11,52)(12,15)(13,16)(14,22)(17,55)(19,24)(20,51)(21,26)(27,53)(28,54)(29,48)(30,41)(33,45)(35,39)(36,44)(42,43), (2,48)(3,41)(4,43)(5,32)(6,33)(7,38)(8,23)(10,51)(11,26)(12,53)(13,16)(14,17)(15,27)(18,56)(20,25)(21,52)(22,55)(28,54)(29,40)(30,49)(31,42)(34,46)(36,44)(37,45), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56) );
G=PermutationGroup([(1,35),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,18),(9,19),(10,20),(11,21),(12,15),(13,16),(14,17),(22,55),(23,56),(24,50),(25,51),(26,52),(27,53),(28,54),(36,44),(37,45),(38,46),(39,47),(40,48),(41,49),(42,43)], [(1,19,47,24),(2,20,48,25),(3,21,49,26),(4,15,43,27),(5,16,44,28),(6,17,45,22),(7,18,46,23),(8,38,56,34),(9,39,50,35),(10,40,51,29),(11,41,52,30),(12,42,53,31),(13,36,54,32),(14,37,55,33)], [(1,39),(2,48),(3,30),(4,31),(5,36),(7,46),(8,56),(9,24),(10,51),(11,21),(12,15),(13,28),(16,54),(18,23),(19,50),(20,25),(26,52),(27,53),(29,40),(32,44),(34,38),(35,47),(41,49),(42,43)], [(1,47),(2,40),(3,49),(4,31),(5,32),(6,37),(9,50),(10,25),(11,52),(12,15),(13,16),(14,22),(17,55),(19,24),(20,51),(21,26),(27,53),(28,54),(29,48),(30,41),(33,45),(35,39),(36,44),(42,43)], [(2,48),(3,41),(4,43),(5,32),(6,33),(7,38),(8,23),(10,51),(11,26),(12,53),(13,16),(14,17),(15,27),(18,56),(20,25),(21,52),(22,55),(28,54),(29,40),(30,49),(31,42),(34,46),(36,44),(37,45)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)])
Matrix representation ►G ⊆ GL8(𝔽29)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 17 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 17 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(8,GF(29))| [1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28],[12,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0] >;
64 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 7A | ··· | 7F | 14A | ··· | 14R | 28A | ··· | 28X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | ··· | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 8 | ··· | 8 | 8 | ··· | 8 | 8 | ··· | 8 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 |
type | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C4 | C7 | C14 | C14 | C28 | F8 | C2×F8 | C2×F8 | C4×F8 |
kernel | C2×C4×F8 | C4×F8 | C22×F8 | C2×F8 | C24×C4 | C23×C4 | C25 | C24 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 4 | 6 | 12 | 6 | 24 | 1 | 2 | 1 | 4 |
In GAP, Magma, Sage, TeX
C_2\times C_4\times F_8
% in TeX
G:=Group("C2xC4xF8");
// GroupNames label
G:=SmallGroup(448,1362);
// by ID
G=gap.SmallGroup(448,1362);
# by ID
G:=PCGroup([7,-2,-2,-7,-2,-2,2,2,204,998,2371,3450]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^4=c^2=d^2=e^2=f^7=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,f*c*f^-1=e*d=d*e,f*d*f^-1=c,f*e*f^-1=d>;
// generators/relations