Home | IrrRep | Linear | Cn Dn Sn An ... | |||||
About | degree | Characters | × | ⋊ | . | ○ | ≀ | |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C2×D7×C4○D4 | 112 | C2xD7xC4oD4 | 448,1375 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C4○D4)⋊1D7 = (C7×D4)⋊14D4 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4):1D7 | 448,772 | |
(C2×C4○D4)⋊2D7 = C2×D4⋊D14 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | (C2xC4oD4):2D7 | 448,1273 | |
(C2×C4○D4)⋊3D7 = C2×D4.8D14 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4):3D7 | 448,1274 | |
(C2×C4○D4)⋊4D7 = C28.C24 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | 4 | (C2xC4oD4):4D7 | 448,1275 |
(C2×C4○D4)⋊5D7 = C14.1042- (1+4) | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4):5D7 | 448,1277 | |
(C2×C4○D4)⋊6D7 = (C2×C28)⋊15D4 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | (C2xC4oD4):6D7 | 448,1281 | |
(C2×C4○D4)⋊7D7 = C14.1452+ (1+4) | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | (C2xC4oD4):7D7 | 448,1282 | |
(C2×C4○D4)⋊8D7 = C14.1462+ (1+4) | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | (C2xC4oD4):8D7 | 448,1283 | |
(C2×C4○D4)⋊9D7 = C14.1072- (1+4) | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4):9D7 | 448,1284 | |
(C2×C4○D4)⋊10D7 = (C2×C28)⋊17D4 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4):10D7 | 448,1285 | |
(C2×C4○D4)⋊11D7 = C14.1082- (1+4) | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4):11D7 | 448,1286 | |
(C2×C4○D4)⋊12D7 = C14.1482+ (1+4) | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4):12D7 | 448,1287 | |
(C2×C4○D4)⋊13D7 = C2×D4⋊8D14 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | (C2xC4oD4):13D7 | 448,1376 | |
(C2×C4○D4)⋊14D7 = C2×D4.10D14 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4):14D7 | 448,1377 | |
(C2×C4○D4)⋊15D7 = C14.C25 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | 4 | (C2xC4oD4):15D7 | 448,1378 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C4○D4).1D7 = C4○D4⋊Dic7 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4).1D7 | 448,766 | |
(C2×C4○D4).2D7 = Q8.(C2×Dic7) | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4).2D7 | 448,767 | |
(C2×C4○D4).3D7 = (D4×C14).11C4 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4).3D7 | 448,768 | |
(C2×C4○D4).4D7 = C2×Q8⋊2Dic7 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | (C2xC4oD4).4D7 | 448,769 | |
(C2×C4○D4).5D7 = (D4×C14)⋊9C4 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | 4 | (C2xC4oD4).5D7 | 448,770 |
(C2×C4○D4).6D7 = (D4×C14).16C4 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | 4 | (C2xC4oD4).6D7 | 448,771 |
(C2×C4○D4).7D7 = (C7×D4).32D4 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4).7D7 | 448,773 | |
(C2×C4○D4).8D7 = (D4×C14)⋊10C4 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | 4 | (C2xC4oD4).8D7 | 448,774 |
(C2×C4○D4).9D7 = C28.76C24 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 112 | 4 | (C2xC4oD4).9D7 | 448,1272 |
(C2×C4○D4).10D7 = C2×D4.9D14 | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4).10D7 | 448,1276 | |
(C2×C4○D4).11D7 = C14.1052- (1+4) | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4).11D7 | 448,1278 | |
(C2×C4○D4).12D7 = C14.1442+ (1+4) | φ: D7/C7 → C2 ⊆ Out C2×C4○D4 | 224 | (C2xC4oD4).12D7 | 448,1280 | |
(C2×C4○D4).13D7 = C2×D4.Dic7 | φ: trivial image | 224 | (C2xC4oD4).13D7 | 448,1271 | |
(C2×C4○D4).14D7 = C4○D4×Dic7 | φ: trivial image | 224 | (C2xC4oD4).14D7 | 448,1279 |