Copied to
clipboard

G = (D4×C14)⋊10C4order 448 = 26·7

6th semidirect product of D4×C14 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (D4×C14)⋊10C4, (C22×C28)⋊5C4, (Q8×C14)⋊10C4, (C2×Q8)⋊8Dic7, (C2×D4)⋊10Dic7, (C2×C28).200D4, (C22×C4)⋊4Dic7, (C2×D4).206D14, C23⋊Dic711C2, C23.4(C2×Dic7), (C22×C4).166D14, C4.35(C23.D7), C28.100(C22⋊C4), C23.77(C22×D7), (D4×C14).281C22, C73(C23.C23), C23.D7.79C22, C23.21D1421C2, C22.9(C22×Dic7), (C22×C14).116C23, (C22×C28).212C22, (C2×C4○D4).8D7, (C14×C4○D4).8C2, (C2×C14).41(C2×D4), (C2×C4).6(C2×Dic7), (C2×C28).308(C2×C4), C14.87(C2×C22⋊C4), C22.13(C2×C7⋊D4), C2.23(C2×C23.D7), (C2×C4).201(C7⋊D4), (C22×C14).16(C2×C4), (C2×C14).202(C22×C4), SmallGroup(448,774)

Series: Derived Chief Lower central Upper central

C1C2×C14 — (D4×C14)⋊10C4
C1C7C14C2×C14C22×C14C23.D7C23.21D14 — (D4×C14)⋊10C4
C7C14C2×C14 — (D4×C14)⋊10C4
C1C4C22×C4C2×C4○D4

Generators and relations for (D4×C14)⋊10C4
 G = < a,b,c,d | a14=b4=c2=d4=1, ab=ba, ac=ca, dad-1=a-1b2, cbc=b-1, bd=db, dcd-1=a7b2c >

Subgroups: 532 in 158 conjugacy classes, 67 normal (25 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic7, C28, C28, C28, C2×C14, C2×C14, C2×C14, C23⋊C4, C42⋊C2, C2×C4○D4, C2×Dic7, C2×C28, C2×C28, C2×C28, C7×D4, C7×Q8, C22×C14, C22×C14, C23.C23, C4×Dic7, C4⋊Dic7, C23.D7, C22×C28, C22×C28, D4×C14, D4×C14, Q8×C14, C7×C4○D4, C23⋊Dic7, C23.21D14, C14×C4○D4, (D4×C14)⋊10C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, Dic7, D14, C2×C22⋊C4, C2×Dic7, C7⋊D4, C22×D7, C23.C23, C23.D7, C22×Dic7, C2×C7⋊D4, C2×C23.D7, (D4×C14)⋊10C4

Smallest permutation representation of (D4×C14)⋊10C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 60 36 23)(2 61 37 24)(3 62 38 25)(4 63 39 26)(5 64 40 27)(6 65 41 28)(7 66 42 15)(8 67 29 16)(9 68 30 17)(10 69 31 18)(11 70 32 19)(12 57 33 20)(13 58 34 21)(14 59 35 22)(43 107 73 86)(44 108 74 87)(45 109 75 88)(46 110 76 89)(47 111 77 90)(48 112 78 91)(49 99 79 92)(50 100 80 93)(51 101 81 94)(52 102 82 95)(53 103 83 96)(54 104 84 97)(55 105 71 98)(56 106 72 85)
(1 49)(2 50)(3 51)(4 52)(5 53)(6 54)(7 55)(8 56)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 105)(16 106)(17 107)(18 108)(19 109)(20 110)(21 111)(22 112)(23 99)(24 100)(25 101)(26 102)(27 103)(28 104)(29 72)(30 73)(31 74)(32 75)(33 76)(34 77)(35 78)(36 79)(37 80)(38 81)(39 82)(40 83)(41 84)(42 71)(57 89)(58 90)(59 91)(60 92)(61 93)(62 94)(63 95)(64 96)(65 97)(66 98)(67 85)(68 86)(69 87)(70 88)
(2 35)(3 13)(4 33)(5 11)(6 31)(7 9)(8 29)(10 41)(12 39)(14 37)(15 17)(16 67)(18 65)(19 27)(20 63)(21 25)(22 61)(24 59)(26 57)(28 69)(30 42)(32 40)(34 38)(43 48 73 78)(44 77 74 47)(45 46 75 76)(49 56 79 72)(50 71 80 55)(51 54 81 84)(52 83 82 53)(58 62)(64 70)(66 68)(85 99 106 92)(86 91 107 112)(87 111 108 90)(88 89 109 110)(93 105 100 98)(94 97 101 104)(95 103 102 96)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,60,36,23)(2,61,37,24)(3,62,38,25)(4,63,39,26)(5,64,40,27)(6,65,41,28)(7,66,42,15)(8,67,29,16)(9,68,30,17)(10,69,31,18)(11,70,32,19)(12,57,33,20)(13,58,34,21)(14,59,35,22)(43,107,73,86)(44,108,74,87)(45,109,75,88)(46,110,76,89)(47,111,77,90)(48,112,78,91)(49,99,79,92)(50,100,80,93)(51,101,81,94)(52,102,82,95)(53,103,83,96)(54,104,84,97)(55,105,71,98)(56,106,72,85), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,72)(30,73)(31,74)(32,75)(33,76)(34,77)(35,78)(36,79)(37,80)(38,81)(39,82)(40,83)(41,84)(42,71)(57,89)(58,90)(59,91)(60,92)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,85)(68,86)(69,87)(70,88), (2,35)(3,13)(4,33)(5,11)(6,31)(7,9)(8,29)(10,41)(12,39)(14,37)(15,17)(16,67)(18,65)(19,27)(20,63)(21,25)(22,61)(24,59)(26,57)(28,69)(30,42)(32,40)(34,38)(43,48,73,78)(44,77,74,47)(45,46,75,76)(49,56,79,72)(50,71,80,55)(51,54,81,84)(52,83,82,53)(58,62)(64,70)(66,68)(85,99,106,92)(86,91,107,112)(87,111,108,90)(88,89,109,110)(93,105,100,98)(94,97,101,104)(95,103,102,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,60,36,23)(2,61,37,24)(3,62,38,25)(4,63,39,26)(5,64,40,27)(6,65,41,28)(7,66,42,15)(8,67,29,16)(9,68,30,17)(10,69,31,18)(11,70,32,19)(12,57,33,20)(13,58,34,21)(14,59,35,22)(43,107,73,86)(44,108,74,87)(45,109,75,88)(46,110,76,89)(47,111,77,90)(48,112,78,91)(49,99,79,92)(50,100,80,93)(51,101,81,94)(52,102,82,95)(53,103,83,96)(54,104,84,97)(55,105,71,98)(56,106,72,85), (1,49)(2,50)(3,51)(4,52)(5,53)(6,54)(7,55)(8,56)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,72)(30,73)(31,74)(32,75)(33,76)(34,77)(35,78)(36,79)(37,80)(38,81)(39,82)(40,83)(41,84)(42,71)(57,89)(58,90)(59,91)(60,92)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,85)(68,86)(69,87)(70,88), (2,35)(3,13)(4,33)(5,11)(6,31)(7,9)(8,29)(10,41)(12,39)(14,37)(15,17)(16,67)(18,65)(19,27)(20,63)(21,25)(22,61)(24,59)(26,57)(28,69)(30,42)(32,40)(34,38)(43,48,73,78)(44,77,74,47)(45,46,75,76)(49,56,79,72)(50,71,80,55)(51,54,81,84)(52,83,82,53)(58,62)(64,70)(66,68)(85,99,106,92)(86,91,107,112)(87,111,108,90)(88,89,109,110)(93,105,100,98)(94,97,101,104)(95,103,102,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,60,36,23),(2,61,37,24),(3,62,38,25),(4,63,39,26),(5,64,40,27),(6,65,41,28),(7,66,42,15),(8,67,29,16),(9,68,30,17),(10,69,31,18),(11,70,32,19),(12,57,33,20),(13,58,34,21),(14,59,35,22),(43,107,73,86),(44,108,74,87),(45,109,75,88),(46,110,76,89),(47,111,77,90),(48,112,78,91),(49,99,79,92),(50,100,80,93),(51,101,81,94),(52,102,82,95),(53,103,83,96),(54,104,84,97),(55,105,71,98),(56,106,72,85)], [(1,49),(2,50),(3,51),(4,52),(5,53),(6,54),(7,55),(8,56),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,105),(16,106),(17,107),(18,108),(19,109),(20,110),(21,111),(22,112),(23,99),(24,100),(25,101),(26,102),(27,103),(28,104),(29,72),(30,73),(31,74),(32,75),(33,76),(34,77),(35,78),(36,79),(37,80),(38,81),(39,82),(40,83),(41,84),(42,71),(57,89),(58,90),(59,91),(60,92),(61,93),(62,94),(63,95),(64,96),(65,97),(66,98),(67,85),(68,86),(69,87),(70,88)], [(2,35),(3,13),(4,33),(5,11),(6,31),(7,9),(8,29),(10,41),(12,39),(14,37),(15,17),(16,67),(18,65),(19,27),(20,63),(21,25),(22,61),(24,59),(26,57),(28,69),(30,42),(32,40),(34,38),(43,48,73,78),(44,77,74,47),(45,46,75,76),(49,56,79,72),(50,71,80,55),(51,54,81,84),(52,83,82,53),(58,62),(64,70),(66,68),(85,99,106,92),(86,91,107,112),(87,111,108,90),(88,89,109,110),(93,105,100,98),(94,97,101,104),(95,103,102,96)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H···4O7A7B7C14A···14I14J···14AA28A···28L28M···28AD
order122222244444444···477714···1414···1428···2828···28
size1122244112224428···282222···24···42···24···4

82 irreducible representations

dim11111112222222244
type++++++-+-+-
imageC1C2C2C2C4C4C4D4D7Dic7D14Dic7D14Dic7C7⋊D4C23.C23(D4×C14)⋊10C4
kernel(D4×C14)⋊10C4C23⋊Dic7C23.21D14C14×C4○D4C22×C28D4×C14Q8×C14C2×C28C2×C4○D4C22×C4C22×C4C2×D4C2×D4C2×Q8C2×C4C7C1
# reps1421422436336324212

Matrix representation of (D4×C14)⋊10C4 in GL4(𝔽29) generated by

82100
81000
00821
00810
,
12000
01200
00170
00017
,
002123
0068
8600
232100
,
1000
72800
00914
001920
G:=sub<GL(4,GF(29))| [8,8,0,0,21,10,0,0,0,0,8,8,0,0,21,10],[12,0,0,0,0,12,0,0,0,0,17,0,0,0,0,17],[0,0,8,23,0,0,6,21,21,6,0,0,23,8,0,0],[1,7,0,0,0,28,0,0,0,0,9,19,0,0,14,20] >;

(D4×C14)⋊10C4 in GAP, Magma, Sage, TeX

(D_4\times C_{14})\rtimes_{10}C_4
% in TeX

G:=Group("(D4xC14):10C4");
// GroupNames label

G:=SmallGroup(448,774);
// by ID

G=gap.SmallGroup(448,774);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,232,422,297,1684,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^4=c^2=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,c*b*c=b^-1,b*d=d*b,d*c*d^-1=a^7*b^2*c>;
// generators/relations

׿
×
𝔽