direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C4○D4, D4⋊3C22, C2.3C24, C4.8C23, Q8⋊3C22, C22.1C23, C23.11C22, C4○(C2×D4), (C2×C4)○D4, C4○(C2×Q8), (C2×C4)○Q8, C4○(C4○D4), (C2×D4)⋊7C2, (C2×Q8)⋊6C2, (C22×C4)⋊6C2, (C2×C4)⋊5C22, (C2×C4)○(C2×Q8), SmallGroup(32,48)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C4○D4
G = < a,b,c,d | a2=b4=d2=1, c2=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c >
Subgroups: 94 in 82 conjugacy classes, 70 normal (6 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C4○D4
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4
Character table of C2×C4○D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ13 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ16 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
(1 11)(2 12)(3 9)(4 10)(5 14)(6 15)(7 16)(8 13)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 4 3 2)(5 6 7 8)(9 12 11 10)(13 14 15 16)
(1 13)(2 14)(3 15)(4 16)(5 12)(6 9)(7 10)(8 11)
G:=sub<Sym(16)| (1,11)(2,12)(3,9)(4,10)(5,14)(6,15)(7,16)(8,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4,3,2)(5,6,7,8)(9,12,11,10)(13,14,15,16), (1,13)(2,14)(3,15)(4,16)(5,12)(6,9)(7,10)(8,11)>;
G:=Group( (1,11)(2,12)(3,9)(4,10)(5,14)(6,15)(7,16)(8,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,4,3,2)(5,6,7,8)(9,12,11,10)(13,14,15,16), (1,13)(2,14)(3,15)(4,16)(5,12)(6,9)(7,10)(8,11) );
G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,14),(6,15),(7,16),(8,13)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,4,3,2),(5,6,7,8),(9,12,11,10),(13,14,15,16)], [(1,13),(2,14),(3,15),(4,16),(5,12),(6,9),(7,10),(8,11)]])
G:=TransitiveGroup(16,18);
C2×C4○D4 is a maximal subgroup of
(C22×C8)⋊C2 C23.C23 M4(2).8C22 C23.24D4 C23.36D4 C42⋊C22 D4⋊D4 D4.7D4 C23.33C23 C22.19C24 C22.26C24 C22.29C24 C23.38C23 C22.31C24 D4⋊5D4 D4⋊6D4 Q8⋊5D4 Q8⋊6D4 Q8○M4(2) D8⋊C22 C2.C25
C2×C4○D4 is a maximal quotient of
C2×C4×D4 C2×C4×Q8 C22.19C24 C23.36C23 C22.26C24 C23.37C23 C22.32C24 C22.33C24 C22.34C24 C22.35C24 C22.36C24 D4⋊5D4 D4⋊6D4 Q8⋊5D4 Q8⋊6D4 C22.45C24 C22.46C24 C22.47C24 D4⋊3Q8 C22.49C24 C22.50C24 Q8⋊3Q8 C22.53C24
Matrix representation of C2×C4○D4 ►in GL3(𝔽5) generated by
4 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 4 |
4 | 0 | 0 |
0 | 3 | 0 |
0 | 0 | 3 |
4 | 0 | 0 |
0 | 0 | 1 |
0 | 4 | 0 |
1 | 0 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
G:=sub<GL(3,GF(5))| [4,0,0,0,4,0,0,0,4],[4,0,0,0,3,0,0,0,3],[4,0,0,0,0,4,0,1,0],[1,0,0,0,0,1,0,1,0] >;
C2×C4○D4 in GAP, Magma, Sage, TeX
C_2\times C_4\circ D_4
% in TeX
G:=Group("C2xC4oD4");
// GroupNames label
G:=SmallGroup(32,48);
// by ID
G=gap.SmallGroup(32,48);
# by ID
G:=PCGroup([5,-2,2,2,2,-2,181,72]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=d^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations
Export