Copied to
clipboard

?

G = C14.1482+ (1+4)order 448 = 26·7

57th non-split extension by C14 of 2+ (1+4) acting via 2+ (1+4)/C4○D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C14.1482+ (1+4), (C7×Q8)⋊19D4, C75(Q86D4), C282D444C2, C28⋊D431C2, C287D440C2, (Q8×Dic7)⋊30C2, Q810(C7⋊D4), C28.268(C2×D4), Dic79(C4○D4), (C2×D4).239D14, (C2×Q8).211D14, (C2×C14).320C24, (C2×C28).562C23, D14⋊C4.91C22, (C22×C4).290D14, C14.170(C22×D4), C2.72(D48D14), (C2×D28).185C22, (D4×C14).278C22, C4⋊Dic7.261C22, (Q8×C14).246C22, C23.141(C22×D7), C22.329(C23×D7), Dic7⋊C4.175C22, (C22×C28).298C22, (C22×C14).246C23, (C2×Dic7).166C23, (C4×Dic7).177C22, (C22×D7).141C23, C23.D7.138C22, (C2×C4○D4)⋊12D7, (C4×C7⋊D4)⋊31C2, C4.74(C2×C7⋊D4), (C14×C4○D4)⋊12C2, C2.107(D7×C4○D4), (C2×Q82D7)⋊19C2, C14.219(C2×C4○D4), (C2×C4×D7).171C22, C2.43(C22×C7⋊D4), (C2×C4).642(C22×D7), (C2×C7⋊D4).143C22, SmallGroup(448,1287)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C14.1482+ (1+4)
C1C7C14C2×C14C22×D7C2×C7⋊D4C282D4 — C14.1482+ (1+4)
C7C2×C14 — C14.1482+ (1+4)

Subgroups: 1460 in 312 conjugacy classes, 113 normal (22 characteristic)
C1, C2 [×3], C2 [×6], C4 [×6], C4 [×7], C22, C22 [×18], C7, C2×C4, C2×C4 [×3], C2×C4 [×17], D4 [×24], Q8 [×4], C23 [×3], C23 [×3], D7 [×3], C14 [×3], C14 [×3], C42 [×3], C22⋊C4 [×6], C4⋊C4 [×4], C22×C4 [×3], C22×C4 [×3], C2×D4 [×3], C2×D4 [×12], C2×Q8, C4○D4 [×8], Dic7 [×2], Dic7 [×4], C28 [×6], C28, D14 [×9], C2×C14, C2×C14 [×9], C4×D4 [×3], C4×Q8, C4⋊D4 [×6], C41D4 [×3], C2×C4○D4, C2×C4○D4, C4×D7 [×6], D28 [×6], C2×Dic7 [×2], C2×Dic7 [×3], C7⋊D4 [×12], C2×C28, C2×C28 [×3], C2×C28 [×6], C7×D4 [×6], C7×Q8 [×4], C22×D7 [×3], C22×C14 [×3], Q86D4, C4×Dic7 [×3], Dic7⋊C4, C4⋊Dic7 [×3], D14⋊C4 [×3], C23.D7 [×3], C2×C4×D7 [×3], C2×D28 [×3], Q82D7 [×4], C2×C7⋊D4 [×9], C22×C28 [×3], D4×C14 [×3], Q8×C14, C7×C4○D4 [×4], C4×C7⋊D4 [×3], C287D4 [×3], C282D4 [×3], C28⋊D4 [×3], Q8×Dic7, C2×Q82D7, C14×C4○D4, C14.1482+ (1+4)

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C4○D4 [×2], C24, D14 [×7], C22×D4, C2×C4○D4, 2+ (1+4), C7⋊D4 [×4], C22×D7 [×7], Q86D4, C2×C7⋊D4 [×6], C23×D7, D7×C4○D4, D48D14, C22×C7⋊D4, C14.1482+ (1+4)

Generators and relations
 G = < a,b,c,d,e | a14=b4=c2=e2=1, d2=b2, ab=ba, ac=ca, ad=da, eae=a-1, cbc=b-1, bd=db, be=eb, cd=dc, ece=a7c, ede=a7b2d >

Smallest permutation representation
On 224 points
Generators in S224
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 97 16 99)(2 98 17 100)(3 85 18 101)(4 86 19 102)(5 87 20 103)(6 88 21 104)(7 89 22 105)(8 90 23 106)(9 91 24 107)(10 92 25 108)(11 93 26 109)(12 94 27 110)(13 95 28 111)(14 96 15 112)(29 71 51 60)(30 72 52 61)(31 73 53 62)(32 74 54 63)(33 75 55 64)(34 76 56 65)(35 77 43 66)(36 78 44 67)(37 79 45 68)(38 80 46 69)(39 81 47 70)(40 82 48 57)(41 83 49 58)(42 84 50 59)(113 220 130 208)(114 221 131 209)(115 222 132 210)(116 223 133 197)(117 224 134 198)(118 211 135 199)(119 212 136 200)(120 213 137 201)(121 214 138 202)(122 215 139 203)(123 216 140 204)(124 217 127 205)(125 218 128 206)(126 219 129 207)(141 180 155 195)(142 181 156 196)(143 182 157 183)(144 169 158 184)(145 170 159 185)(146 171 160 186)(147 172 161 187)(148 173 162 188)(149 174 163 189)(150 175 164 190)(151 176 165 191)(152 177 166 192)(153 178 167 193)(154 179 168 194)
(1 119)(2 120)(3 121)(4 122)(5 123)(6 124)(7 125)(8 126)(9 113)(10 114)(11 115)(12 116)(13 117)(14 118)(15 135)(16 136)(17 137)(18 138)(19 139)(20 140)(21 127)(22 128)(23 129)(24 130)(25 131)(26 132)(27 133)(28 134)(29 146)(30 147)(31 148)(32 149)(33 150)(34 151)(35 152)(36 153)(37 154)(38 141)(39 142)(40 143)(41 144)(42 145)(43 166)(44 167)(45 168)(46 155)(47 156)(48 157)(49 158)(50 159)(51 160)(52 161)(53 162)(54 163)(55 164)(56 165)(57 182)(58 169)(59 170)(60 171)(61 172)(62 173)(63 174)(64 175)(65 176)(66 177)(67 178)(68 179)(69 180)(70 181)(71 186)(72 187)(73 188)(74 189)(75 190)(76 191)(77 192)(78 193)(79 194)(80 195)(81 196)(82 183)(83 184)(84 185)(85 202)(86 203)(87 204)(88 205)(89 206)(90 207)(91 208)(92 209)(93 210)(94 197)(95 198)(96 199)(97 200)(98 201)(99 212)(100 213)(101 214)(102 215)(103 216)(104 217)(105 218)(106 219)(107 220)(108 221)(109 222)(110 223)(111 224)(112 211)
(1 52 16 30)(2 53 17 31)(3 54 18 32)(4 55 19 33)(5 56 20 34)(6 43 21 35)(7 44 22 36)(8 45 23 37)(9 46 24 38)(10 47 25 39)(11 48 26 40)(12 49 27 41)(13 50 28 42)(14 51 15 29)(57 109 82 93)(58 110 83 94)(59 111 84 95)(60 112 71 96)(61 99 72 97)(62 100 73 98)(63 101 74 85)(64 102 75 86)(65 103 76 87)(66 104 77 88)(67 105 78 89)(68 106 79 90)(69 107 80 91)(70 108 81 92)(113 155 130 141)(114 156 131 142)(115 157 132 143)(116 158 133 144)(117 159 134 145)(118 160 135 146)(119 161 136 147)(120 162 137 148)(121 163 138 149)(122 164 139 150)(123 165 140 151)(124 166 127 152)(125 167 128 153)(126 168 129 154)(169 223 184 197)(170 224 185 198)(171 211 186 199)(172 212 187 200)(173 213 188 201)(174 214 189 202)(175 215 190 203)(176 216 191 204)(177 217 192 205)(178 218 193 206)(179 219 194 207)(180 220 195 208)(181 221 196 209)(182 222 183 210)
(1 154)(2 153)(3 152)(4 151)(5 150)(6 149)(7 148)(8 147)(9 146)(10 145)(11 144)(12 143)(13 142)(14 141)(15 155)(16 168)(17 167)(18 166)(19 165)(20 164)(21 163)(22 162)(23 161)(24 160)(25 159)(26 158)(27 157)(28 156)(29 120)(30 119)(31 118)(32 117)(33 116)(34 115)(35 114)(36 113)(37 126)(38 125)(39 124)(40 123)(41 122)(42 121)(43 131)(44 130)(45 129)(46 128)(47 127)(48 140)(49 139)(50 138)(51 137)(52 136)(53 135)(54 134)(55 133)(56 132)(57 204)(58 203)(59 202)(60 201)(61 200)(62 199)(63 198)(64 197)(65 210)(66 209)(67 208)(68 207)(69 206)(70 205)(71 213)(72 212)(73 211)(74 224)(75 223)(76 222)(77 221)(78 220)(79 219)(80 218)(81 217)(82 216)(83 215)(84 214)(85 177)(86 176)(87 175)(88 174)(89 173)(90 172)(91 171)(92 170)(93 169)(94 182)(95 181)(96 180)(97 179)(98 178)(99 194)(100 193)(101 192)(102 191)(103 190)(104 189)(105 188)(106 187)(107 186)(108 185)(109 184)(110 183)(111 196)(112 195)

G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,97,16,99)(2,98,17,100)(3,85,18,101)(4,86,19,102)(5,87,20,103)(6,88,21,104)(7,89,22,105)(8,90,23,106)(9,91,24,107)(10,92,25,108)(11,93,26,109)(12,94,27,110)(13,95,28,111)(14,96,15,112)(29,71,51,60)(30,72,52,61)(31,73,53,62)(32,74,54,63)(33,75,55,64)(34,76,56,65)(35,77,43,66)(36,78,44,67)(37,79,45,68)(38,80,46,69)(39,81,47,70)(40,82,48,57)(41,83,49,58)(42,84,50,59)(113,220,130,208)(114,221,131,209)(115,222,132,210)(116,223,133,197)(117,224,134,198)(118,211,135,199)(119,212,136,200)(120,213,137,201)(121,214,138,202)(122,215,139,203)(123,216,140,204)(124,217,127,205)(125,218,128,206)(126,219,129,207)(141,180,155,195)(142,181,156,196)(143,182,157,183)(144,169,158,184)(145,170,159,185)(146,171,160,186)(147,172,161,187)(148,173,162,188)(149,174,163,189)(150,175,164,190)(151,176,165,191)(152,177,166,192)(153,178,167,193)(154,179,168,194), (1,119)(2,120)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,113)(10,114)(11,115)(12,116)(13,117)(14,118)(15,135)(16,136)(17,137)(18,138)(19,139)(20,140)(21,127)(22,128)(23,129)(24,130)(25,131)(26,132)(27,133)(28,134)(29,146)(30,147)(31,148)(32,149)(33,150)(34,151)(35,152)(36,153)(37,154)(38,141)(39,142)(40,143)(41,144)(42,145)(43,166)(44,167)(45,168)(46,155)(47,156)(48,157)(49,158)(50,159)(51,160)(52,161)(53,162)(54,163)(55,164)(56,165)(57,182)(58,169)(59,170)(60,171)(61,172)(62,173)(63,174)(64,175)(65,176)(66,177)(67,178)(68,179)(69,180)(70,181)(71,186)(72,187)(73,188)(74,189)(75,190)(76,191)(77,192)(78,193)(79,194)(80,195)(81,196)(82,183)(83,184)(84,185)(85,202)(86,203)(87,204)(88,205)(89,206)(90,207)(91,208)(92,209)(93,210)(94,197)(95,198)(96,199)(97,200)(98,201)(99,212)(100,213)(101,214)(102,215)(103,216)(104,217)(105,218)(106,219)(107,220)(108,221)(109,222)(110,223)(111,224)(112,211), (1,52,16,30)(2,53,17,31)(3,54,18,32)(4,55,19,33)(5,56,20,34)(6,43,21,35)(7,44,22,36)(8,45,23,37)(9,46,24,38)(10,47,25,39)(11,48,26,40)(12,49,27,41)(13,50,28,42)(14,51,15,29)(57,109,82,93)(58,110,83,94)(59,111,84,95)(60,112,71,96)(61,99,72,97)(62,100,73,98)(63,101,74,85)(64,102,75,86)(65,103,76,87)(66,104,77,88)(67,105,78,89)(68,106,79,90)(69,107,80,91)(70,108,81,92)(113,155,130,141)(114,156,131,142)(115,157,132,143)(116,158,133,144)(117,159,134,145)(118,160,135,146)(119,161,136,147)(120,162,137,148)(121,163,138,149)(122,164,139,150)(123,165,140,151)(124,166,127,152)(125,167,128,153)(126,168,129,154)(169,223,184,197)(170,224,185,198)(171,211,186,199)(172,212,187,200)(173,213,188,201)(174,214,189,202)(175,215,190,203)(176,216,191,204)(177,217,192,205)(178,218,193,206)(179,219,194,207)(180,220,195,208)(181,221,196,209)(182,222,183,210), (1,154)(2,153)(3,152)(4,151)(5,150)(6,149)(7,148)(8,147)(9,146)(10,145)(11,144)(12,143)(13,142)(14,141)(15,155)(16,168)(17,167)(18,166)(19,165)(20,164)(21,163)(22,162)(23,161)(24,160)(25,159)(26,158)(27,157)(28,156)(29,120)(30,119)(31,118)(32,117)(33,116)(34,115)(35,114)(36,113)(37,126)(38,125)(39,124)(40,123)(41,122)(42,121)(43,131)(44,130)(45,129)(46,128)(47,127)(48,140)(49,139)(50,138)(51,137)(52,136)(53,135)(54,134)(55,133)(56,132)(57,204)(58,203)(59,202)(60,201)(61,200)(62,199)(63,198)(64,197)(65,210)(66,209)(67,208)(68,207)(69,206)(70,205)(71,213)(72,212)(73,211)(74,224)(75,223)(76,222)(77,221)(78,220)(79,219)(80,218)(81,217)(82,216)(83,215)(84,214)(85,177)(86,176)(87,175)(88,174)(89,173)(90,172)(91,171)(92,170)(93,169)(94,182)(95,181)(96,180)(97,179)(98,178)(99,194)(100,193)(101,192)(102,191)(103,190)(104,189)(105,188)(106,187)(107,186)(108,185)(109,184)(110,183)(111,196)(112,195)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,97,16,99)(2,98,17,100)(3,85,18,101)(4,86,19,102)(5,87,20,103)(6,88,21,104)(7,89,22,105)(8,90,23,106)(9,91,24,107)(10,92,25,108)(11,93,26,109)(12,94,27,110)(13,95,28,111)(14,96,15,112)(29,71,51,60)(30,72,52,61)(31,73,53,62)(32,74,54,63)(33,75,55,64)(34,76,56,65)(35,77,43,66)(36,78,44,67)(37,79,45,68)(38,80,46,69)(39,81,47,70)(40,82,48,57)(41,83,49,58)(42,84,50,59)(113,220,130,208)(114,221,131,209)(115,222,132,210)(116,223,133,197)(117,224,134,198)(118,211,135,199)(119,212,136,200)(120,213,137,201)(121,214,138,202)(122,215,139,203)(123,216,140,204)(124,217,127,205)(125,218,128,206)(126,219,129,207)(141,180,155,195)(142,181,156,196)(143,182,157,183)(144,169,158,184)(145,170,159,185)(146,171,160,186)(147,172,161,187)(148,173,162,188)(149,174,163,189)(150,175,164,190)(151,176,165,191)(152,177,166,192)(153,178,167,193)(154,179,168,194), (1,119)(2,120)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,113)(10,114)(11,115)(12,116)(13,117)(14,118)(15,135)(16,136)(17,137)(18,138)(19,139)(20,140)(21,127)(22,128)(23,129)(24,130)(25,131)(26,132)(27,133)(28,134)(29,146)(30,147)(31,148)(32,149)(33,150)(34,151)(35,152)(36,153)(37,154)(38,141)(39,142)(40,143)(41,144)(42,145)(43,166)(44,167)(45,168)(46,155)(47,156)(48,157)(49,158)(50,159)(51,160)(52,161)(53,162)(54,163)(55,164)(56,165)(57,182)(58,169)(59,170)(60,171)(61,172)(62,173)(63,174)(64,175)(65,176)(66,177)(67,178)(68,179)(69,180)(70,181)(71,186)(72,187)(73,188)(74,189)(75,190)(76,191)(77,192)(78,193)(79,194)(80,195)(81,196)(82,183)(83,184)(84,185)(85,202)(86,203)(87,204)(88,205)(89,206)(90,207)(91,208)(92,209)(93,210)(94,197)(95,198)(96,199)(97,200)(98,201)(99,212)(100,213)(101,214)(102,215)(103,216)(104,217)(105,218)(106,219)(107,220)(108,221)(109,222)(110,223)(111,224)(112,211), (1,52,16,30)(2,53,17,31)(3,54,18,32)(4,55,19,33)(5,56,20,34)(6,43,21,35)(7,44,22,36)(8,45,23,37)(9,46,24,38)(10,47,25,39)(11,48,26,40)(12,49,27,41)(13,50,28,42)(14,51,15,29)(57,109,82,93)(58,110,83,94)(59,111,84,95)(60,112,71,96)(61,99,72,97)(62,100,73,98)(63,101,74,85)(64,102,75,86)(65,103,76,87)(66,104,77,88)(67,105,78,89)(68,106,79,90)(69,107,80,91)(70,108,81,92)(113,155,130,141)(114,156,131,142)(115,157,132,143)(116,158,133,144)(117,159,134,145)(118,160,135,146)(119,161,136,147)(120,162,137,148)(121,163,138,149)(122,164,139,150)(123,165,140,151)(124,166,127,152)(125,167,128,153)(126,168,129,154)(169,223,184,197)(170,224,185,198)(171,211,186,199)(172,212,187,200)(173,213,188,201)(174,214,189,202)(175,215,190,203)(176,216,191,204)(177,217,192,205)(178,218,193,206)(179,219,194,207)(180,220,195,208)(181,221,196,209)(182,222,183,210), (1,154)(2,153)(3,152)(4,151)(5,150)(6,149)(7,148)(8,147)(9,146)(10,145)(11,144)(12,143)(13,142)(14,141)(15,155)(16,168)(17,167)(18,166)(19,165)(20,164)(21,163)(22,162)(23,161)(24,160)(25,159)(26,158)(27,157)(28,156)(29,120)(30,119)(31,118)(32,117)(33,116)(34,115)(35,114)(36,113)(37,126)(38,125)(39,124)(40,123)(41,122)(42,121)(43,131)(44,130)(45,129)(46,128)(47,127)(48,140)(49,139)(50,138)(51,137)(52,136)(53,135)(54,134)(55,133)(56,132)(57,204)(58,203)(59,202)(60,201)(61,200)(62,199)(63,198)(64,197)(65,210)(66,209)(67,208)(68,207)(69,206)(70,205)(71,213)(72,212)(73,211)(74,224)(75,223)(76,222)(77,221)(78,220)(79,219)(80,218)(81,217)(82,216)(83,215)(84,214)(85,177)(86,176)(87,175)(88,174)(89,173)(90,172)(91,171)(92,170)(93,169)(94,182)(95,181)(96,180)(97,179)(98,178)(99,194)(100,193)(101,192)(102,191)(103,190)(104,189)(105,188)(106,187)(107,186)(108,185)(109,184)(110,183)(111,196)(112,195) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,97,16,99),(2,98,17,100),(3,85,18,101),(4,86,19,102),(5,87,20,103),(6,88,21,104),(7,89,22,105),(8,90,23,106),(9,91,24,107),(10,92,25,108),(11,93,26,109),(12,94,27,110),(13,95,28,111),(14,96,15,112),(29,71,51,60),(30,72,52,61),(31,73,53,62),(32,74,54,63),(33,75,55,64),(34,76,56,65),(35,77,43,66),(36,78,44,67),(37,79,45,68),(38,80,46,69),(39,81,47,70),(40,82,48,57),(41,83,49,58),(42,84,50,59),(113,220,130,208),(114,221,131,209),(115,222,132,210),(116,223,133,197),(117,224,134,198),(118,211,135,199),(119,212,136,200),(120,213,137,201),(121,214,138,202),(122,215,139,203),(123,216,140,204),(124,217,127,205),(125,218,128,206),(126,219,129,207),(141,180,155,195),(142,181,156,196),(143,182,157,183),(144,169,158,184),(145,170,159,185),(146,171,160,186),(147,172,161,187),(148,173,162,188),(149,174,163,189),(150,175,164,190),(151,176,165,191),(152,177,166,192),(153,178,167,193),(154,179,168,194)], [(1,119),(2,120),(3,121),(4,122),(5,123),(6,124),(7,125),(8,126),(9,113),(10,114),(11,115),(12,116),(13,117),(14,118),(15,135),(16,136),(17,137),(18,138),(19,139),(20,140),(21,127),(22,128),(23,129),(24,130),(25,131),(26,132),(27,133),(28,134),(29,146),(30,147),(31,148),(32,149),(33,150),(34,151),(35,152),(36,153),(37,154),(38,141),(39,142),(40,143),(41,144),(42,145),(43,166),(44,167),(45,168),(46,155),(47,156),(48,157),(49,158),(50,159),(51,160),(52,161),(53,162),(54,163),(55,164),(56,165),(57,182),(58,169),(59,170),(60,171),(61,172),(62,173),(63,174),(64,175),(65,176),(66,177),(67,178),(68,179),(69,180),(70,181),(71,186),(72,187),(73,188),(74,189),(75,190),(76,191),(77,192),(78,193),(79,194),(80,195),(81,196),(82,183),(83,184),(84,185),(85,202),(86,203),(87,204),(88,205),(89,206),(90,207),(91,208),(92,209),(93,210),(94,197),(95,198),(96,199),(97,200),(98,201),(99,212),(100,213),(101,214),(102,215),(103,216),(104,217),(105,218),(106,219),(107,220),(108,221),(109,222),(110,223),(111,224),(112,211)], [(1,52,16,30),(2,53,17,31),(3,54,18,32),(4,55,19,33),(5,56,20,34),(6,43,21,35),(7,44,22,36),(8,45,23,37),(9,46,24,38),(10,47,25,39),(11,48,26,40),(12,49,27,41),(13,50,28,42),(14,51,15,29),(57,109,82,93),(58,110,83,94),(59,111,84,95),(60,112,71,96),(61,99,72,97),(62,100,73,98),(63,101,74,85),(64,102,75,86),(65,103,76,87),(66,104,77,88),(67,105,78,89),(68,106,79,90),(69,107,80,91),(70,108,81,92),(113,155,130,141),(114,156,131,142),(115,157,132,143),(116,158,133,144),(117,159,134,145),(118,160,135,146),(119,161,136,147),(120,162,137,148),(121,163,138,149),(122,164,139,150),(123,165,140,151),(124,166,127,152),(125,167,128,153),(126,168,129,154),(169,223,184,197),(170,224,185,198),(171,211,186,199),(172,212,187,200),(173,213,188,201),(174,214,189,202),(175,215,190,203),(176,216,191,204),(177,217,192,205),(178,218,193,206),(179,219,194,207),(180,220,195,208),(181,221,196,209),(182,222,183,210)], [(1,154),(2,153),(3,152),(4,151),(5,150),(6,149),(7,148),(8,147),(9,146),(10,145),(11,144),(12,143),(13,142),(14,141),(15,155),(16,168),(17,167),(18,166),(19,165),(20,164),(21,163),(22,162),(23,161),(24,160),(25,159),(26,158),(27,157),(28,156),(29,120),(30,119),(31,118),(32,117),(33,116),(34,115),(35,114),(36,113),(37,126),(38,125),(39,124),(40,123),(41,122),(42,121),(43,131),(44,130),(45,129),(46,128),(47,127),(48,140),(49,139),(50,138),(51,137),(52,136),(53,135),(54,134),(55,133),(56,132),(57,204),(58,203),(59,202),(60,201),(61,200),(62,199),(63,198),(64,197),(65,210),(66,209),(67,208),(68,207),(69,206),(70,205),(71,213),(72,212),(73,211),(74,224),(75,223),(76,222),(77,221),(78,220),(79,219),(80,218),(81,217),(82,216),(83,215),(84,214),(85,177),(86,176),(87,175),(88,174),(89,173),(90,172),(91,171),(92,170),(93,169),(94,182),(95,181),(96,180),(97,179),(98,178),(99,194),(100,193),(101,192),(102,191),(103,190),(104,189),(105,188),(106,187),(107,186),(108,185),(109,184),(110,183),(111,196),(112,195)])

Matrix representation G ⊆ GL4(𝔽29) generated by

191900
10700
00280
00028
,
28000
02800
00285
00171
,
91400
152000
00124
00028
,
91400
152000
00120
00012
,
1000
72800
001227
002817
G:=sub<GL(4,GF(29))| [19,10,0,0,19,7,0,0,0,0,28,0,0,0,0,28],[28,0,0,0,0,28,0,0,0,0,28,17,0,0,5,1],[9,15,0,0,14,20,0,0,0,0,1,0,0,0,24,28],[9,15,0,0,14,20,0,0,0,0,12,0,0,0,0,12],[1,7,0,0,0,28,0,0,0,0,12,28,0,0,27,17] >;

85 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4H4I4J4K4L4M4N4O7A7B7C14A···14I14J···14AA28A···28L28M···28AD
order12222222224···4444444477714···1414···1428···2828···28
size11114442828282···2141414142828282222···24···42···24···4

85 irreducible representations

dim111111112222222444
type+++++++++++++++
imageC1C2C2C2C2C2C2C2D4D7C4○D4D14D14D14C7⋊D42+ (1+4)D7×C4○D4D48D14
kernelC14.1482+ (1+4)C4×C7⋊D4C287D4C282D4C28⋊D4Q8×Dic7C2×Q82D7C14×C4○D4C7×Q8C2×C4○D4Dic7C22×C4C2×D4C2×Q8Q8C14C2C2
# reps1333311143499324166

In GAP, Magma, Sage, TeX

C_{14}._{148}2_+^{(1+4)}
% in TeX

G:=Group("C14.148ES+(2,2)");
// GroupNames label

G:=SmallGroup(448,1287);
// by ID

G=gap.SmallGroup(448,1287);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,758,219,1571,80,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^14=b^4=c^2=e^2=1,d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^7*c,e*d*e=a^7*b^2*d>;
// generators/relations

׿
×
𝔽