Extensions 1→N→G→Q→1 with N=C2 and Q=D567C2

Direct product G=N×Q with N=C2 and Q=D567C2
dρLabelID
C2×D567C2224C2xD56:7C2448,1194


Non-split extensions G=N.Q with N=C2 and Q=D567C2
extensionφ:Q→Aut NdρLabelID
C2.1(D567C2) = C4×C56⋊C2central extension (φ=1)224C2.1(D56:7C2)448,225
C2.2(D567C2) = C4×D56central extension (φ=1)224C2.2(D56:7C2)448,226
C2.3(D567C2) = C4×Dic28central extension (φ=1)448C2.3(D56:7C2)448,232
C2.4(D567C2) = C23.22D28central extension (φ=1)224C2.4(D56:7C2)448,640
C2.5(D567C2) = C23.23D28central extension (φ=1)224C2.5(D56:7C2)448,647
C2.6(D567C2) = C56.13Q8central stem extension (φ=1)448C2.6(D56:7C2)448,217
C2.7(D567C2) = C8.8D28central stem extension (φ=1)224C2.7(D56:7C2)448,230
C2.8(D567C2) = C42.264D14central stem extension (φ=1)224C2.8(D56:7C2)448,231
C2.9(D567C2) = C23.10D28central stem extension (φ=1)224C2.9(D56:7C2)448,257
C2.10(D567C2) = D28.32D4central stem extension (φ=1)224C2.10(D56:7C2)448,267
C2.11(D567C2) = D2814D4central stem extension (φ=1)224C2.11(D56:7C2)448,268
C2.12(D567C2) = C23.13D28central stem extension (φ=1)224C2.12(D56:7C2)448,271
C2.13(D567C2) = Dic14.3Q8central stem extension (φ=1)448C2.13(D56:7C2)448,363
C2.14(D567C2) = D28.19D4central stem extension (φ=1)224C2.14(D56:7C2)448,378
C2.15(D567C2) = C42.36D14central stem extension (φ=1)224C2.15(D56:7C2)448,379
C2.16(D567C2) = D28.3Q8central stem extension (φ=1)224C2.16(D56:7C2)448,381
C2.17(D567C2) = C5630D4central stem extension (φ=1)224C2.17(D56:7C2)448,648
C2.18(D567C2) = C5629D4central stem extension (φ=1)224C2.18(D56:7C2)448,649
C2.19(D567C2) = C56.82D4central stem extension (φ=1)224C2.19(D56:7C2)448,650

׿
×
𝔽