metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C56⋊30D4, C23.24D28, C7⋊6(C8⋊8D4), (C22×C8)⋊9D7, C8⋊14(C7⋊D4), C8⋊Dic7⋊18C2, (C2×C14)⋊8SD16, (C2×C4).67D28, C2.D56⋊2C2, (C22×C56)⋊13C2, C28⋊7D4.5C2, (C2×C8).320D14, C28.412(C2×D4), (C2×C28).355D4, C14.17(C4○D8), C28.48D4⋊2C2, C28.44D4⋊2C2, C22⋊1(C56⋊C2), C14.17(C2×SD16), C4.111(C4○D28), C28.227(C4○D4), C2.18(C28⋊7D4), C14.70(C4⋊D4), (C2×C56).393C22, (C2×C28).768C23, (C2×D28).18C22, (C22×C4).430D14, C22.131(C2×D28), (C22×C14).140D4, C4⋊Dic7.23C22, C2.17(D56⋊7C2), (C22×C28).518C22, (C2×Dic14).17C22, (C2×C56⋊C2)⋊21C2, C2.17(C2×C56⋊C2), C4.105(C2×C7⋊D4), (C2×C14).158(C2×D4), (C2×C4).716(C22×D7), SmallGroup(448,648)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C56⋊30D4
G = < a,b,c | a56=b4=c2=1, bab-1=cac=a27, cbc=b-1 >
Subgroups: 708 in 124 conjugacy classes, 47 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C14, D4⋊C4, Q8⋊C4, C4.Q8, C4⋊D4, C22⋊Q8, C22×C8, C2×SD16, C56, C56, Dic14, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, C8⋊8D4, C56⋊C2, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C2×C56, C2×C56, C2×Dic14, C2×D28, C2×C7⋊D4, C22×C28, C28.44D4, C8⋊Dic7, C2.D56, C2×C56⋊C2, C28.48D4, C28⋊7D4, C22×C56, C56⋊30D4
Quotients: C1, C2, C22, D4, C23, D7, SD16, C2×D4, C4○D4, D14, C4⋊D4, C2×SD16, C4○D8, D28, C7⋊D4, C22×D7, C8⋊8D4, C56⋊C2, C2×D28, C4○D28, C2×C7⋊D4, C2×C56⋊C2, D56⋊7C2, C28⋊7D4, C56⋊30D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 88 194 160)(2 59 195 131)(3 86 196 158)(4 57 197 129)(5 84 198 156)(6 111 199 127)(7 82 200 154)(8 109 201 125)(9 80 202 152)(10 107 203 123)(11 78 204 150)(12 105 205 121)(13 76 206 148)(14 103 207 119)(15 74 208 146)(16 101 209 117)(17 72 210 144)(18 99 211 115)(19 70 212 142)(20 97 213 113)(21 68 214 140)(22 95 215 167)(23 66 216 138)(24 93 217 165)(25 64 218 136)(26 91 219 163)(27 62 220 134)(28 89 221 161)(29 60 222 132)(30 87 223 159)(31 58 224 130)(32 85 169 157)(33 112 170 128)(34 83 171 155)(35 110 172 126)(36 81 173 153)(37 108 174 124)(38 79 175 151)(39 106 176 122)(40 77 177 149)(41 104 178 120)(42 75 179 147)(43 102 180 118)(44 73 181 145)(45 100 182 116)(46 71 183 143)(47 98 184 114)(48 69 185 141)(49 96 186 168)(50 67 187 139)(51 94 188 166)(52 65 189 137)(53 92 190 164)(54 63 191 135)(55 90 192 162)(56 61 193 133)
(1 160)(2 131)(3 158)(4 129)(5 156)(6 127)(7 154)(8 125)(9 152)(10 123)(11 150)(12 121)(13 148)(14 119)(15 146)(16 117)(17 144)(18 115)(19 142)(20 113)(21 140)(22 167)(23 138)(24 165)(25 136)(26 163)(27 134)(28 161)(29 132)(30 159)(31 130)(32 157)(33 128)(34 155)(35 126)(36 153)(37 124)(38 151)(39 122)(40 149)(41 120)(42 147)(43 118)(44 145)(45 116)(46 143)(47 114)(48 141)(49 168)(50 139)(51 166)(52 137)(53 164)(54 135)(55 162)(56 133)(57 197)(58 224)(59 195)(60 222)(61 193)(62 220)(63 191)(64 218)(65 189)(66 216)(67 187)(68 214)(69 185)(70 212)(71 183)(72 210)(73 181)(74 208)(75 179)(76 206)(77 177)(78 204)(79 175)(80 202)(81 173)(82 200)(83 171)(84 198)(85 169)(86 196)(87 223)(88 194)(89 221)(90 192)(91 219)(92 190)(93 217)(94 188)(95 215)(96 186)(97 213)(98 184)(99 211)(100 182)(101 209)(102 180)(103 207)(104 178)(105 205)(106 176)(107 203)(108 174)(109 201)(110 172)(111 199)(112 170)
G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,88,194,160)(2,59,195,131)(3,86,196,158)(4,57,197,129)(5,84,198,156)(6,111,199,127)(7,82,200,154)(8,109,201,125)(9,80,202,152)(10,107,203,123)(11,78,204,150)(12,105,205,121)(13,76,206,148)(14,103,207,119)(15,74,208,146)(16,101,209,117)(17,72,210,144)(18,99,211,115)(19,70,212,142)(20,97,213,113)(21,68,214,140)(22,95,215,167)(23,66,216,138)(24,93,217,165)(25,64,218,136)(26,91,219,163)(27,62,220,134)(28,89,221,161)(29,60,222,132)(30,87,223,159)(31,58,224,130)(32,85,169,157)(33,112,170,128)(34,83,171,155)(35,110,172,126)(36,81,173,153)(37,108,174,124)(38,79,175,151)(39,106,176,122)(40,77,177,149)(41,104,178,120)(42,75,179,147)(43,102,180,118)(44,73,181,145)(45,100,182,116)(46,71,183,143)(47,98,184,114)(48,69,185,141)(49,96,186,168)(50,67,187,139)(51,94,188,166)(52,65,189,137)(53,92,190,164)(54,63,191,135)(55,90,192,162)(56,61,193,133), (1,160)(2,131)(3,158)(4,129)(5,156)(6,127)(7,154)(8,125)(9,152)(10,123)(11,150)(12,121)(13,148)(14,119)(15,146)(16,117)(17,144)(18,115)(19,142)(20,113)(21,140)(22,167)(23,138)(24,165)(25,136)(26,163)(27,134)(28,161)(29,132)(30,159)(31,130)(32,157)(33,128)(34,155)(35,126)(36,153)(37,124)(38,151)(39,122)(40,149)(41,120)(42,147)(43,118)(44,145)(45,116)(46,143)(47,114)(48,141)(49,168)(50,139)(51,166)(52,137)(53,164)(54,135)(55,162)(56,133)(57,197)(58,224)(59,195)(60,222)(61,193)(62,220)(63,191)(64,218)(65,189)(66,216)(67,187)(68,214)(69,185)(70,212)(71,183)(72,210)(73,181)(74,208)(75,179)(76,206)(77,177)(78,204)(79,175)(80,202)(81,173)(82,200)(83,171)(84,198)(85,169)(86,196)(87,223)(88,194)(89,221)(90,192)(91,219)(92,190)(93,217)(94,188)(95,215)(96,186)(97,213)(98,184)(99,211)(100,182)(101,209)(102,180)(103,207)(104,178)(105,205)(106,176)(107,203)(108,174)(109,201)(110,172)(111,199)(112,170)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,88,194,160)(2,59,195,131)(3,86,196,158)(4,57,197,129)(5,84,198,156)(6,111,199,127)(7,82,200,154)(8,109,201,125)(9,80,202,152)(10,107,203,123)(11,78,204,150)(12,105,205,121)(13,76,206,148)(14,103,207,119)(15,74,208,146)(16,101,209,117)(17,72,210,144)(18,99,211,115)(19,70,212,142)(20,97,213,113)(21,68,214,140)(22,95,215,167)(23,66,216,138)(24,93,217,165)(25,64,218,136)(26,91,219,163)(27,62,220,134)(28,89,221,161)(29,60,222,132)(30,87,223,159)(31,58,224,130)(32,85,169,157)(33,112,170,128)(34,83,171,155)(35,110,172,126)(36,81,173,153)(37,108,174,124)(38,79,175,151)(39,106,176,122)(40,77,177,149)(41,104,178,120)(42,75,179,147)(43,102,180,118)(44,73,181,145)(45,100,182,116)(46,71,183,143)(47,98,184,114)(48,69,185,141)(49,96,186,168)(50,67,187,139)(51,94,188,166)(52,65,189,137)(53,92,190,164)(54,63,191,135)(55,90,192,162)(56,61,193,133), (1,160)(2,131)(3,158)(4,129)(5,156)(6,127)(7,154)(8,125)(9,152)(10,123)(11,150)(12,121)(13,148)(14,119)(15,146)(16,117)(17,144)(18,115)(19,142)(20,113)(21,140)(22,167)(23,138)(24,165)(25,136)(26,163)(27,134)(28,161)(29,132)(30,159)(31,130)(32,157)(33,128)(34,155)(35,126)(36,153)(37,124)(38,151)(39,122)(40,149)(41,120)(42,147)(43,118)(44,145)(45,116)(46,143)(47,114)(48,141)(49,168)(50,139)(51,166)(52,137)(53,164)(54,135)(55,162)(56,133)(57,197)(58,224)(59,195)(60,222)(61,193)(62,220)(63,191)(64,218)(65,189)(66,216)(67,187)(68,214)(69,185)(70,212)(71,183)(72,210)(73,181)(74,208)(75,179)(76,206)(77,177)(78,204)(79,175)(80,202)(81,173)(82,200)(83,171)(84,198)(85,169)(86,196)(87,223)(88,194)(89,221)(90,192)(91,219)(92,190)(93,217)(94,188)(95,215)(96,186)(97,213)(98,184)(99,211)(100,182)(101,209)(102,180)(103,207)(104,178)(105,205)(106,176)(107,203)(108,174)(109,201)(110,172)(111,199)(112,170) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,88,194,160),(2,59,195,131),(3,86,196,158),(4,57,197,129),(5,84,198,156),(6,111,199,127),(7,82,200,154),(8,109,201,125),(9,80,202,152),(10,107,203,123),(11,78,204,150),(12,105,205,121),(13,76,206,148),(14,103,207,119),(15,74,208,146),(16,101,209,117),(17,72,210,144),(18,99,211,115),(19,70,212,142),(20,97,213,113),(21,68,214,140),(22,95,215,167),(23,66,216,138),(24,93,217,165),(25,64,218,136),(26,91,219,163),(27,62,220,134),(28,89,221,161),(29,60,222,132),(30,87,223,159),(31,58,224,130),(32,85,169,157),(33,112,170,128),(34,83,171,155),(35,110,172,126),(36,81,173,153),(37,108,174,124),(38,79,175,151),(39,106,176,122),(40,77,177,149),(41,104,178,120),(42,75,179,147),(43,102,180,118),(44,73,181,145),(45,100,182,116),(46,71,183,143),(47,98,184,114),(48,69,185,141),(49,96,186,168),(50,67,187,139),(51,94,188,166),(52,65,189,137),(53,92,190,164),(54,63,191,135),(55,90,192,162),(56,61,193,133)], [(1,160),(2,131),(3,158),(4,129),(5,156),(6,127),(7,154),(8,125),(9,152),(10,123),(11,150),(12,121),(13,148),(14,119),(15,146),(16,117),(17,144),(18,115),(19,142),(20,113),(21,140),(22,167),(23,138),(24,165),(25,136),(26,163),(27,134),(28,161),(29,132),(30,159),(31,130),(32,157),(33,128),(34,155),(35,126),(36,153),(37,124),(38,151),(39,122),(40,149),(41,120),(42,147),(43,118),(44,145),(45,116),(46,143),(47,114),(48,141),(49,168),(50,139),(51,166),(52,137),(53,164),(54,135),(55,162),(56,133),(57,197),(58,224),(59,195),(60,222),(61,193),(62,220),(63,191),(64,218),(65,189),(66,216),(67,187),(68,214),(69,185),(70,212),(71,183),(72,210),(73,181),(74,208),(75,179),(76,206),(77,177),(78,204),(79,175),(80,202),(81,173),(82,200),(83,171),(84,198),(85,169),(86,196),(87,223),(88,194),(89,221),(90,192),(91,219),(92,190),(93,217),(94,188),(95,215),(96,186),(97,213),(98,184),(99,211),(100,182),(101,209),(102,180),(103,207),(104,178),(105,205),(106,176),(107,203),(108,174),(109,201),(110,172),(111,199),(112,170)]])
118 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 7A | 7B | 7C | 8A | ··· | 8H | 14A | ··· | 14U | 28A | ··· | 28X | 56A | ··· | 56AV |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | ··· | 8 | 14 | ··· | 14 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 56 | 2 | 2 | 2 | 2 | 56 | 56 | 56 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
118 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D7 | C4○D4 | SD16 | D14 | D14 | C4○D8 | C7⋊D4 | D28 | D28 | C4○D28 | C56⋊C2 | D56⋊7C2 |
kernel | C56⋊30D4 | C28.44D4 | C8⋊Dic7 | C2.D56 | C2×C56⋊C2 | C28.48D4 | C28⋊7D4 | C22×C56 | C56 | C2×C28 | C22×C14 | C22×C8 | C28 | C2×C14 | C2×C8 | C22×C4 | C14 | C8 | C2×C4 | C23 | C4 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 2 | 4 | 6 | 3 | 4 | 12 | 6 | 6 | 12 | 24 | 24 |
Matrix representation of C56⋊30D4 ►in GL4(𝔽113) generated by
0 | 87 | 0 | 0 |
13 | 87 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 4 | 25 |
112 | 0 | 0 | 0 |
112 | 1 | 0 | 0 |
0 | 0 | 56 | 111 |
0 | 0 | 43 | 57 |
112 | 0 | 0 | 0 |
112 | 1 | 0 | 0 |
0 | 0 | 56 | 111 |
0 | 0 | 42 | 57 |
G:=sub<GL(4,GF(113))| [0,13,0,0,87,87,0,0,0,0,9,4,0,0,0,25],[112,112,0,0,0,1,0,0,0,0,56,43,0,0,111,57],[112,112,0,0,0,1,0,0,0,0,56,42,0,0,111,57] >;
C56⋊30D4 in GAP, Magma, Sage, TeX
C_{56}\rtimes_{30}D_4
% in TeX
G:=Group("C56:30D4");
// GroupNames label
G:=SmallGroup(448,648);
// by ID
G=gap.SmallGroup(448,648);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,120,254,1684,102,18822]);
// Polycyclic
G:=Group<a,b,c|a^56=b^4=c^2=1,b*a*b^-1=c*a*c=a^27,c*b*c=b^-1>;
// generators/relations