metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D56:7C2, C4.20D28, C28.35D4, C8.17D14, Dic28:7C2, C22.1D28, C56.17C22, C28.30C23, D28.7C22, Dic14.6C22, (C2xC8):4D7, (C2xC56):6C2, C7:1(C4oD8), C4oD28:1C2, C56:C2:7C2, C2.13(C2xD28), C14.11(C2xD4), (C2xC14).18D4, (C2xC4).81D14, C4.28(C22xD7), (C2xC28).99C22, SmallGroup(224,99)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D56:7C2
G = < a,b,c | a56=b2=c2=1, bab=a-1, ac=ca, cbc=a28b >
Subgroups: 302 in 62 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2xC4, C2xC4, D4, Q8, D7, C14, C14, C2xC8, D8, SD16, Q16, C4oD4, Dic7, C28, D14, C2xC14, C4oD8, C56, Dic14, C4xD7, D28, C7:D4, C2xC28, C56:C2, D56, Dic28, C2xC56, C4oD28, D56:7C2
Quotients: C1, C2, C22, D4, C23, D7, C2xD4, D14, C4oD8, D28, C22xD7, C2xD28, D56:7C2
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(57 75)(58 74)(59 73)(60 72)(61 71)(62 70)(63 69)(64 68)(65 67)(76 112)(77 111)(78 110)(79 109)(80 108)(81 107)(82 106)(83 105)(84 104)(85 103)(86 102)(87 101)(88 100)(89 99)(90 98)(91 97)(92 96)(93 95)
(1 77)(2 78)(3 79)(4 80)(5 81)(6 82)(7 83)(8 84)(9 85)(10 86)(11 87)(12 88)(13 89)(14 90)(15 91)(16 92)(17 93)(18 94)(19 95)(20 96)(21 97)(22 98)(23 99)(24 100)(25 101)(26 102)(27 103)(28 104)(29 105)(30 106)(31 107)(32 108)(33 109)(34 110)(35 111)(36 112)(37 57)(38 58)(39 59)(40 60)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,75)(58,74)(59,73)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67)(76,112)(77,111)(78,110)(79,109)(80,108)(81,107)(82,106)(83,105)(84,104)(85,103)(86,102)(87,101)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95), (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,85)(10,86)(11,87)(12,88)(13,89)(14,90)(15,91)(16,92)(17,93)(18,94)(19,95)(20,96)(21,97)(22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,75)(58,74)(59,73)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67)(76,112)(77,111)(78,110)(79,109)(80,108)(81,107)(82,106)(83,105)(84,104)(85,103)(86,102)(87,101)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95), (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,85)(10,86)(11,87)(12,88)(13,89)(14,90)(15,91)(16,92)(17,93)(18,94)(19,95)(20,96)(21,97)(22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(57,75),(58,74),(59,73),(60,72),(61,71),(62,70),(63,69),(64,68),(65,67),(76,112),(77,111),(78,110),(79,109),(80,108),(81,107),(82,106),(83,105),(84,104),(85,103),(86,102),(87,101),(88,100),(89,99),(90,98),(91,97),(92,96),(93,95)], [(1,77),(2,78),(3,79),(4,80),(5,81),(6,82),(7,83),(8,84),(9,85),(10,86),(11,87),(12,88),(13,89),(14,90),(15,91),(16,92),(17,93),(18,94),(19,95),(20,96),(21,97),(22,98),(23,99),(24,100),(25,101),(26,102),(27,103),(28,104),(29,105),(30,106),(31,107),(32,108),(33,109),(34,110),(35,111),(36,112),(37,57),(38,58),(39,59),(40,60),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76)]])
D56:7C2 is a maximal subgroup of
D56:8C4 Dic28.C4 D56.1C4 D56:2C4 D56:11C4 D56:4C4 D56:10C4 D56:7C4 D112:7C2 C16:D14 C16.D14 D8.D14 Q16.D14 C56.30C23 C56.9C23 D4.11D28 D4.12D28 D4.13D28 D8:13D14 D28.29D4 D28.30D4 D7xC4oD8 D8:10D14
D56:7C2 is a maximal quotient of
C56.13Q8 C4xC56:C2 C4xD56 C8.8D28 C42.264D14 C4xDic28 C23.10D28 D28.32D4 D28:14D4 C23.13D28 Dic14.3Q8 D28.19D4 C42.36D14 D28.3Q8 C23.22D28 C23.23D28 C56:30D4 C56:29D4 C56.82D4
62 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 14A | ··· | 14I | 28A | ··· | 28L | 56A | ··· | 56X |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 28 | 28 | 1 | 1 | 2 | 28 | 28 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | D14 | D14 | C4oD8 | D28 | D28 | D56:7C2 |
kernel | D56:7C2 | C56:C2 | D56 | Dic28 | C2xC56 | C4oD28 | C28 | C2xC14 | C2xC8 | C8 | C2xC4 | C7 | C4 | C22 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 3 | 6 | 3 | 4 | 6 | 6 | 24 |
Matrix representation of D56:7C2 ►in GL2(F113) generated by
85 | 21 |
92 | 48 |
32 | 55 |
4 | 81 |
79 | 108 |
5 | 34 |
G:=sub<GL(2,GF(113))| [85,92,21,48],[32,4,55,81],[79,5,108,34] >;
D56:7C2 in GAP, Magma, Sage, TeX
D_{56}\rtimes_7C_2
% in TeX
G:=Group("D56:7C2");
// GroupNames label
G:=SmallGroup(224,99);
// by ID
G=gap.SmallGroup(224,99);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,218,50,579,69,6917]);
// Polycyclic
G:=Group<a,b,c|a^56=b^2=c^2=1,b*a*b=a^-1,a*c=c*a,c*b*c=a^28*b>;
// generators/relations