Copied to
clipboard

G = D56:7C2order 224 = 25·7

The semidirect product of D56 and C2 acting through Inn(D56)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D56:7C2, C4.20D28, C28.35D4, C8.17D14, Dic28:7C2, C22.1D28, C56.17C22, C28.30C23, D28.7C22, Dic14.6C22, (C2xC8):4D7, (C2xC56):6C2, C7:1(C4oD8), C4oD28:1C2, C56:C2:7C2, C2.13(C2xD28), C14.11(C2xD4), (C2xC14).18D4, (C2xC4).81D14, C4.28(C22xD7), (C2xC28).99C22, SmallGroup(224,99)

Series: Derived Chief Lower central Upper central

C1C28 — D56:7C2
C1C7C14C28D28C4oD28 — D56:7C2
C7C14C28 — D56:7C2
C1C4C2xC4C2xC8

Generators and relations for D56:7C2
 G = < a,b,c | a56=b2=c2=1, bab=a-1, ac=ca, cbc=a28b >

Subgroups: 302 in 62 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2xC4, C2xC4, D4, Q8, D7, C14, C14, C2xC8, D8, SD16, Q16, C4oD4, Dic7, C28, D14, C2xC14, C4oD8, C56, Dic14, C4xD7, D28, C7:D4, C2xC28, C56:C2, D56, Dic28, C2xC56, C4oD28, D56:7C2
Quotients: C1, C2, C22, D4, C23, D7, C2xD4, D14, C4oD8, D28, C22xD7, C2xD28, D56:7C2

Smallest permutation representation of D56:7C2
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(57 75)(58 74)(59 73)(60 72)(61 71)(62 70)(63 69)(64 68)(65 67)(76 112)(77 111)(78 110)(79 109)(80 108)(81 107)(82 106)(83 105)(84 104)(85 103)(86 102)(87 101)(88 100)(89 99)(90 98)(91 97)(92 96)(93 95)
(1 77)(2 78)(3 79)(4 80)(5 81)(6 82)(7 83)(8 84)(9 85)(10 86)(11 87)(12 88)(13 89)(14 90)(15 91)(16 92)(17 93)(18 94)(19 95)(20 96)(21 97)(22 98)(23 99)(24 100)(25 101)(26 102)(27 103)(28 104)(29 105)(30 106)(31 107)(32 108)(33 109)(34 110)(35 111)(36 112)(37 57)(38 58)(39 59)(40 60)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,75)(58,74)(59,73)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67)(76,112)(77,111)(78,110)(79,109)(80,108)(81,107)(82,106)(83,105)(84,104)(85,103)(86,102)(87,101)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95), (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,85)(10,86)(11,87)(12,88)(13,89)(14,90)(15,91)(16,92)(17,93)(18,94)(19,95)(20,96)(21,97)(22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,75)(58,74)(59,73)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67)(76,112)(77,111)(78,110)(79,109)(80,108)(81,107)(82,106)(83,105)(84,104)(85,103)(86,102)(87,101)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95), (1,77)(2,78)(3,79)(4,80)(5,81)(6,82)(7,83)(8,84)(9,85)(10,86)(11,87)(12,88)(13,89)(14,90)(15,91)(16,92)(17,93)(18,94)(19,95)(20,96)(21,97)(22,98)(23,99)(24,100)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,107)(32,108)(33,109)(34,110)(35,111)(36,112)(37,57)(38,58)(39,59)(40,60)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(57,75),(58,74),(59,73),(60,72),(61,71),(62,70),(63,69),(64,68),(65,67),(76,112),(77,111),(78,110),(79,109),(80,108),(81,107),(82,106),(83,105),(84,104),(85,103),(86,102),(87,101),(88,100),(89,99),(90,98),(91,97),(92,96),(93,95)], [(1,77),(2,78),(3,79),(4,80),(5,81),(6,82),(7,83),(8,84),(9,85),(10,86),(11,87),(12,88),(13,89),(14,90),(15,91),(16,92),(17,93),(18,94),(19,95),(20,96),(21,97),(22,98),(23,99),(24,100),(25,101),(26,102),(27,103),(28,104),(29,105),(30,106),(31,107),(32,108),(33,109),(34,110),(35,111),(36,112),(37,57),(38,58),(39,59),(40,60),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76)]])

D56:7C2 is a maximal subgroup of
D56:8C4  Dic28.C4  D56.1C4  D56:2C4  D56:11C4  D56:4C4  D56:10C4  D56:7C4  D112:7C2  C16:D14  C16.D14  D8.D14  Q16.D14  C56.30C23  C56.9C23  D4.11D28  D4.12D28  D4.13D28  D8:13D14  D28.29D4  D28.30D4  D7xC4oD8  D8:10D14
D56:7C2 is a maximal quotient of
C56.13Q8  C4xC56:C2  C4xD56  C8.8D28  C42.264D14  C4xDic28  C23.10D28  D28.32D4  D28:14D4  C23.13D28  Dic14.3Q8  D28.19D4  C42.36D14  D28.3Q8  C23.22D28  C23.23D28  C56:30D4  C56:29D4  C56.82D4

62 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E7A7B7C8A8B8C8D14A···14I28A···28L56A···56X
order1222244444777888814···1428···2856···56
size1122828112282822222222···22···22···2

62 irreducible representations

dim111111222222222
type+++++++++++++
imageC1C2C2C2C2C2D4D4D7D14D14C4oD8D28D28D56:7C2
kernelD56:7C2C56:C2D56Dic28C2xC56C4oD28C28C2xC14C2xC8C8C2xC4C7C4C22C1
# reps1211121136346624

Matrix representation of D56:7C2 in GL2(F113) generated by

8521
9248
,
3255
481
,
79108
534
G:=sub<GL(2,GF(113))| [85,92,21,48],[32,4,55,81],[79,5,108,34] >;

D56:7C2 in GAP, Magma, Sage, TeX

D_{56}\rtimes_7C_2
% in TeX

G:=Group("D56:7C2");
// GroupNames label

G:=SmallGroup(224,99);
// by ID

G=gap.SmallGroup(224,99);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,218,50,579,69,6917]);
// Polycyclic

G:=Group<a,b,c|a^56=b^2=c^2=1,b*a*b=a^-1,a*c=c*a,c*b*c=a^28*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<