Extensions 1→N→G→Q→1 with N=C2xQ8 and Q=C2xC14

Direct product G=NxQ with N=C2xQ8 and Q=C2xC14
dρLabelID
Q8xC22xC14448Q8xC2^2xC14448,1387

Semidirect products G=N:Q with N=C2xQ8 and Q=C2xC14
extensionφ:Q→Out NdρLabelID
(C2xQ8):1(C2xC14) = C7xC22:SD16φ: C2xC14/C7C22 ⊆ Out C2xQ8112(C2xQ8):1(C2xC14)448,858
(C2xQ8):2(C2xC14) = C7xD4.9D4φ: C2xC14/C7C22 ⊆ Out C2xQ81124(C2xQ8):2(C2xC14)448,863
(C2xQ8):3(C2xC14) = C7xC22.32C24φ: C2xC14/C7C22 ⊆ Out C2xQ8112(C2xQ8):3(C2xC14)448,1321
(C2xQ8):4(C2xC14) = C7xC23:2Q8φ: C2xC14/C7C22 ⊆ Out C2xQ8112(C2xQ8):4(C2xC14)448,1326
(C2xQ8):5(C2xC14) = C7xC22.45C24φ: C2xC14/C7C22 ⊆ Out C2xQ8112(C2xQ8):5(C2xC14)448,1334
(C2xQ8):6(C2xC14) = C7xC24:C22φ: C2xC14/C7C22 ⊆ Out C2xQ8112(C2xQ8):6(C2xC14)448,1344
(C2xQ8):7(C2xC14) = C7xD4oSD16φ: C2xC14/C7C22 ⊆ Out C2xQ81124(C2xQ8):7(C2xC14)448,1360
(C2xQ8):8(C2xC14) = C14xC22:Q8φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8):8(C2xC14)448,1306
(C2xQ8):9(C2xC14) = C7xC22.19C24φ: C2xC14/C14C2 ⊆ Out C2xQ8112(C2xQ8):9(C2xC14)448,1308
(C2xQ8):10(C2xC14) = C14xC4.4D4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8):10(C2xC14)448,1309
(C2xQ8):11(C2xC14) = C7xC22.29C24φ: C2xC14/C14C2 ⊆ Out C2xQ8112(C2xQ8):11(C2xC14)448,1318
(C2xQ8):12(C2xC14) = C7xD4:5D4φ: C2xC14/C14C2 ⊆ Out C2xQ8112(C2xQ8):12(C2xC14)448,1329
(C2xQ8):13(C2xC14) = SD16xC2xC14φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8):13(C2xC14)448,1353
(C2xQ8):14(C2xC14) = C14xC8:C22φ: C2xC14/C14C2 ⊆ Out C2xQ8112(C2xQ8):14(C2xC14)448,1356
(C2xQ8):15(C2xC14) = C14xC8.C22φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8):15(C2xC14)448,1357
(C2xQ8):16(C2xC14) = C7xD8:C22φ: C2xC14/C14C2 ⊆ Out C2xQ81124(C2xQ8):16(C2xC14)448,1358
(C2xQ8):17(C2xC14) = C14x2- 1+4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8):17(C2xC14)448,1390
(C2xQ8):18(C2xC14) = C7xC2.C25φ: C2xC14/C14C2 ⊆ Out C2xQ81124(C2xQ8):18(C2xC14)448,1391
(C2xQ8):19(C2xC14) = C4oD4xC2xC14φ: trivial image224(C2xQ8):19(C2xC14)448,1388
(C2xQ8):20(C2xC14) = C14x2+ 1+4φ: trivial image112(C2xQ8):20(C2xC14)448,1389

Non-split extensions G=N.Q with N=C2xQ8 and Q=C2xC14
extensionφ:Q→Out NdρLabelID
(C2xQ8).1(C2xC14) = C7xC42.C4φ: C2xC14/C7C22 ⊆ Out C2xQ81124(C2xQ8).1(C2xC14)448,159
(C2xQ8).2(C2xC14) = C7xC42.3C4φ: C2xC14/C7C22 ⊆ Out C2xQ81124(C2xQ8).2(C2xC14)448,160
(C2xQ8).3(C2xC14) = C7xD4.8D4φ: C2xC14/C7C22 ⊆ Out C2xQ81124(C2xQ8).3(C2xC14)448,862
(C2xQ8).4(C2xC14) = C7xD4.10D4φ: C2xC14/C7C22 ⊆ Out C2xQ81124(C2xQ8).4(C2xC14)448,864
(C2xQ8).5(C2xC14) = C7xD4.D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).5(C2xC14)448,869
(C2xQ8).6(C2xC14) = C7xD4.2D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).6(C2xC14)448,871
(C2xQ8).7(C2xC14) = C7xC8:8D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).7(C2xC14)448,873
(C2xQ8).8(C2xC14) = C7xC8.18D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).8(C2xC14)448,875
(C2xQ8).9(C2xC14) = C7xC8:D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).9(C2xC14)448,876
(C2xQ8).10(C2xC14) = C7xC8.D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).10(C2xC14)448,878
(C2xQ8).11(C2xC14) = C7xD4.3D4φ: C2xC14/C7C22 ⊆ Out C2xQ81124(C2xQ8).11(C2xC14)448,879
(C2xQ8).12(C2xC14) = C7xD4.5D4φ: C2xC14/C7C22 ⊆ Out C2xQ82244(C2xQ8).12(C2xC14)448,881
(C2xQ8).13(C2xC14) = C7xC23.47D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).13(C2xC14)448,891
(C2xQ8).14(C2xC14) = C7xC23.48D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).14(C2xC14)448,892
(C2xQ8).15(C2xC14) = C7xC23.20D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).15(C2xC14)448,893
(C2xQ8).16(C2xC14) = C7xC4.SD16φ: C2xC14/C7C22 ⊆ Out C2xQ8448(C2xQ8).16(C2xC14)448,895
(C2xQ8).17(C2xC14) = C7xC42.78C22φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).17(C2xC14)448,896
(C2xQ8).18(C2xC14) = C7xC42.28C22φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).18(C2xC14)448,897
(C2xQ8).19(C2xC14) = C7xC42.30C22φ: C2xC14/C7C22 ⊆ Out C2xQ8448(C2xQ8).19(C2xC14)448,899
(C2xQ8).20(C2xC14) = C7xC8:5D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).20(C2xC14)448,900
(C2xQ8).21(C2xC14) = C7xC4:Q16φ: C2xC14/C7C22 ⊆ Out C2xQ8448(C2xQ8).21(C2xC14)448,902
(C2xQ8).22(C2xC14) = C7xC8.12D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).22(C2xC14)448,903
(C2xQ8).23(C2xC14) = C7xC8:3D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).23(C2xC14)448,904
(C2xQ8).24(C2xC14) = C7xC8.2D4φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).24(C2xC14)448,905
(C2xQ8).25(C2xC14) = C7xC22.33C24φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).25(C2xC14)448,1322
(C2xQ8).26(C2xC14) = C7xC22.36C24φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).26(C2xC14)448,1325
(C2xQ8).27(C2xC14) = C7xC23.41C23φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).27(C2xC14)448,1327
(C2xQ8).28(C2xC14) = C7xC22.49C24φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).28(C2xC14)448,1338
(C2xQ8).29(C2xC14) = C7xQ82φ: C2xC14/C7C22 ⊆ Out C2xQ8448(C2xQ8).29(C2xC14)448,1341
(C2xQ8).30(C2xC14) = C7xC22.56C24φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).30(C2xC14)448,1345
(C2xQ8).31(C2xC14) = C7xC22.57C24φ: C2xC14/C7C22 ⊆ Out C2xQ8224(C2xQ8).31(C2xC14)448,1346
(C2xQ8).32(C2xC14) = C7xQ8oD8φ: C2xC14/C7C22 ⊆ Out C2xQ82244(C2xQ8).32(C2xC14)448,1361
(C2xQ8).33(C2xC14) = C14xC4.10D4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).33(C2xC14)448,820
(C2xQ8).34(C2xC14) = C7xM4(2).8C22φ: C2xC14/C14C2 ⊆ Out C2xQ81124(C2xQ8).34(C2xC14)448,821
(C2xQ8).35(C2xC14) = C14xQ8:C4φ: C2xC14/C14C2 ⊆ Out C2xQ8448(C2xQ8).35(C2xC14)448,823
(C2xQ8).36(C2xC14) = C7xC23.24D4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).36(C2xC14)448,824
(C2xQ8).37(C2xC14) = C7xC23.36D4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).37(C2xC14)448,825
(C2xQ8).38(C2xC14) = C7xC23.38D4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).38(C2xC14)448,827
(C2xQ8).39(C2xC14) = SD16xC28φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).39(C2xC14)448,846
(C2xQ8).40(C2xC14) = Q16xC28φ: C2xC14/C14C2 ⊆ Out C2xQ8448(C2xQ8).40(C2xC14)448,847
(C2xQ8).41(C2xC14) = C7xSD16:C4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).41(C2xC14)448,848
(C2xQ8).42(C2xC14) = C7xQ16:C4φ: C2xC14/C14C2 ⊆ Out C2xQ8448(C2xQ8).42(C2xC14)448,849
(C2xQ8).43(C2xC14) = C7xQ8:D4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).43(C2xC14)448,856
(C2xQ8).44(C2xC14) = C7xD4:D4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).44(C2xC14)448,857
(C2xQ8).45(C2xC14) = C7xC22:Q16φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).45(C2xC14)448,859
(C2xQ8).46(C2xC14) = C7xD4.7D4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).46(C2xC14)448,860
(C2xQ8).47(C2xC14) = C7xC4:SD16φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).47(C2xC14)448,868
(C2xQ8).48(C2xC14) = C7xC4:2Q16φ: C2xC14/C14C2 ⊆ Out C2xQ8448(C2xQ8).48(C2xC14)448,870
(C2xQ8).49(C2xC14) = C7xQ8.D4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).49(C2xC14)448,872
(C2xQ8).50(C2xC14) = C7xQ8:Q8φ: C2xC14/C14C2 ⊆ Out C2xQ8448(C2xQ8).50(C2xC14)448,883
(C2xQ8).51(C2xC14) = C7xC4.Q16φ: C2xC14/C14C2 ⊆ Out C2xQ8448(C2xQ8).51(C2xC14)448,885
(C2xQ8).52(C2xC14) = C7xQ8.Q8φ: C2xC14/C14C2 ⊆ Out C2xQ8448(C2xQ8).52(C2xC14)448,887
(C2xQ8).53(C2xC14) = C7xC23.36C23φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).53(C2xC14)448,1312
(C2xQ8).54(C2xC14) = C14xC4:Q8φ: C2xC14/C14C2 ⊆ Out C2xQ8448(C2xQ8).54(C2xC14)448,1314
(C2xQ8).55(C2xC14) = C7xC22.26C24φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).55(C2xC14)448,1315
(C2xQ8).56(C2xC14) = C7xC23.37C23φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).56(C2xC14)448,1316
(C2xQ8).57(C2xC14) = C7xC23.38C23φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).57(C2xC14)448,1319
(C2xQ8).58(C2xC14) = C7xC22.31C24φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).58(C2xC14)448,1320
(C2xQ8).59(C2xC14) = C7xC22.35C24φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).59(C2xC14)448,1324
(C2xQ8).60(C2xC14) = C7xD4:6D4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).60(C2xC14)448,1330
(C2xQ8).61(C2xC14) = C7xQ8:5D4φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).61(C2xC14)448,1331
(C2xQ8).62(C2xC14) = C7xD4xQ8φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).62(C2xC14)448,1332
(C2xQ8).63(C2xC14) = C7xC22.46C24φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).63(C2xC14)448,1335
(C2xQ8).64(C2xC14) = C7xD4:3Q8φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).64(C2xC14)448,1337
(C2xQ8).65(C2xC14) = C7xC22.50C24φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).65(C2xC14)448,1339
(C2xQ8).66(C2xC14) = C7xQ8:3Q8φ: C2xC14/C14C2 ⊆ Out C2xQ8448(C2xQ8).66(C2xC14)448,1340
(C2xQ8).67(C2xC14) = C7xC22.53C24φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).67(C2xC14)448,1342
(C2xQ8).68(C2xC14) = Q16xC2xC14φ: C2xC14/C14C2 ⊆ Out C2xQ8448(C2xQ8).68(C2xC14)448,1354
(C2xQ8).69(C2xC14) = C14xC4oD8φ: C2xC14/C14C2 ⊆ Out C2xQ8224(C2xQ8).69(C2xC14)448,1355
(C2xQ8).70(C2xC14) = Q8xC2xC28φ: trivial image448(C2xQ8).70(C2xC14)448,1299
(C2xQ8).71(C2xC14) = C4oD4xC28φ: trivial image224(C2xQ8).71(C2xC14)448,1300
(C2xQ8).72(C2xC14) = C7xC23.32C23φ: trivial image224(C2xQ8).72(C2xC14)448,1302
(C2xQ8).73(C2xC14) = C7xC23.33C23φ: trivial image224(C2xQ8).73(C2xC14)448,1303
(C2xQ8).74(C2xC14) = C7xQ8:6D4φ: trivial image224(C2xQ8).74(C2xC14)448,1333

׿
x
:
Z
F
o
wr
Q
<