Copied to
clipboard

G = C7×D4.10D4order 448 = 26·7

Direct product of C7 and D4.10D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×D4.10D4, 2- 1+4.C14, C4≀C24C14, C4⋊Q81C14, D4.10(C7×D4), (C7×D4).44D4, (C2×C28).25D4, C4.30(D4×C14), (C7×Q8).44D4, Q8.10(C7×D4), C28.391(C2×D4), C8.C222C14, C4.10D42C14, C42.13(C2×C14), C22.17(D4×C14), C14.103C22≀C2, (C2×C28).612C23, (C4×C28).255C22, M4(2).2(C2×C14), (Q8×C14).158C22, (C7×2- 1+4).2C2, (C7×M4(2)).29C22, (C7×C4≀C2)⋊12C2, (C7×C4⋊Q8)⋊22C2, (C2×C4).6(C7×D4), C4○D4.4(C2×C14), (C7×C8.C22)⋊9C2, (C2×Q8).4(C2×C14), C2.17(C7×C22≀C2), (C7×C4.10D4)⋊8C2, (C2×C14).412(C2×D4), (C2×C4).7(C22×C14), (C7×C4○D4).34C22, SmallGroup(448,864)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C7×D4.10D4
C1C2C22C2×C4C2×C28Q8×C14C7×C8.C22 — C7×D4.10D4
C1C2C2×C4 — C7×D4.10D4
C1C14C2×C28 — C7×D4.10D4

Generators and relations for C7×D4.10D4
 G = < a,b,c,d,e | a7=b4=c2=1, d4=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=ebe-1=b-1, dcd-1=bc, ece-1=b-1c, ede-1=d3 >

Subgroups: 242 in 142 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C14, C14, C42, C4⋊C4, M4(2), SD16, Q16, C2×Q8, C2×Q8, C4○D4, C4○D4, C28, C28, C2×C14, C2×C14, C4.10D4, C4≀C2, C4⋊Q8, C8.C22, 2- 1+4, C56, C2×C28, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, D4.10D4, C4×C28, C7×C4⋊C4, C7×M4(2), C7×SD16, C7×Q16, Q8×C14, Q8×C14, C7×C4○D4, C7×C4○D4, C7×C4.10D4, C7×C4≀C2, C7×C4⋊Q8, C7×C8.C22, C7×2- 1+4, C7×D4.10D4
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C2×C14, C22≀C2, C7×D4, C22×C14, D4.10D4, D4×C14, C7×C22≀C2, C7×D4.10D4

Smallest permutation representation of C7×D4.10D4
On 112 points
Generators in S112
(1 87 58 111 103 26 33)(2 88 59 112 104 27 34)(3 81 60 105 97 28 35)(4 82 61 106 98 29 36)(5 83 62 107 99 30 37)(6 84 63 108 100 31 38)(7 85 64 109 101 32 39)(8 86 57 110 102 25 40)(9 41 77 17 49 94 69)(10 42 78 18 50 95 70)(11 43 79 19 51 96 71)(12 44 80 20 52 89 72)(13 45 73 21 53 90 65)(14 46 74 22 54 91 66)(15 47 75 23 55 92 67)(16 48 76 24 56 93 68)
(1 7 5 3)(2 4 6 8)(9 11 13 15)(10 16 14 12)(17 19 21 23)(18 24 22 20)(25 27 29 31)(26 32 30 28)(33 39 37 35)(34 36 38 40)(41 43 45 47)(42 48 46 44)(49 51 53 55)(50 56 54 52)(57 59 61 63)(58 64 62 60)(65 67 69 71)(66 72 70 68)(73 75 77 79)(74 80 78 76)(81 87 85 83)(82 84 86 88)(89 95 93 91)(90 92 94 96)(97 103 101 99)(98 100 102 104)(105 111 109 107)(106 108 110 112)
(1 2)(3 4)(5 6)(7 8)(9 16)(10 11)(12 13)(14 15)(17 24)(18 19)(20 21)(22 23)(25 32)(26 27)(28 29)(30 31)(33 34)(35 36)(37 38)(39 40)(41 48)(42 43)(44 45)(46 47)(49 56)(50 51)(52 53)(54 55)(57 64)(58 59)(60 61)(62 63)(65 72)(66 67)(68 69)(70 71)(73 80)(74 75)(76 77)(78 79)(81 82)(83 84)(85 86)(87 88)(89 90)(91 92)(93 94)(95 96)(97 98)(99 100)(101 102)(103 104)(105 106)(107 108)(109 110)(111 112)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 42 5 46)(2 45 6 41)(3 48 7 44)(4 43 8 47)(9 34 13 38)(10 37 14 33)(11 40 15 36)(12 35 16 39)(17 59 21 63)(18 62 22 58)(19 57 23 61)(20 60 24 64)(25 67 29 71)(26 70 30 66)(27 65 31 69)(28 68 32 72)(49 112 53 108)(50 107 54 111)(51 110 55 106)(52 105 56 109)(73 84 77 88)(74 87 78 83)(75 82 79 86)(76 85 80 81)(89 97 93 101)(90 100 94 104)(91 103 95 99)(92 98 96 102)

G:=sub<Sym(112)| (1,87,58,111,103,26,33)(2,88,59,112,104,27,34)(3,81,60,105,97,28,35)(4,82,61,106,98,29,36)(5,83,62,107,99,30,37)(6,84,63,108,100,31,38)(7,85,64,109,101,32,39)(8,86,57,110,102,25,40)(9,41,77,17,49,94,69)(10,42,78,18,50,95,70)(11,43,79,19,51,96,71)(12,44,80,20,52,89,72)(13,45,73,21,53,90,65)(14,46,74,22,54,91,66)(15,47,75,23,55,92,67)(16,48,76,24,56,93,68), (1,7,5,3)(2,4,6,8)(9,11,13,15)(10,16,14,12)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,39,37,35)(34,36,38,40)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,75,77,79)(74,80,78,76)(81,87,85,83)(82,84,86,88)(89,95,93,91)(90,92,94,96)(97,103,101,99)(98,100,102,104)(105,111,109,107)(106,108,110,112), (1,2)(3,4)(5,6)(7,8)(9,16)(10,11)(12,13)(14,15)(17,24)(18,19)(20,21)(22,23)(25,32)(26,27)(28,29)(30,31)(33,34)(35,36)(37,38)(39,40)(41,48)(42,43)(44,45)(46,47)(49,56)(50,51)(52,53)(54,55)(57,64)(58,59)(60,61)(62,63)(65,72)(66,67)(68,69)(70,71)(73,80)(74,75)(76,77)(78,79)(81,82)(83,84)(85,86)(87,88)(89,90)(91,92)(93,94)(95,96)(97,98)(99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,42,5,46)(2,45,6,41)(3,48,7,44)(4,43,8,47)(9,34,13,38)(10,37,14,33)(11,40,15,36)(12,35,16,39)(17,59,21,63)(18,62,22,58)(19,57,23,61)(20,60,24,64)(25,67,29,71)(26,70,30,66)(27,65,31,69)(28,68,32,72)(49,112,53,108)(50,107,54,111)(51,110,55,106)(52,105,56,109)(73,84,77,88)(74,87,78,83)(75,82,79,86)(76,85,80,81)(89,97,93,101)(90,100,94,104)(91,103,95,99)(92,98,96,102)>;

G:=Group( (1,87,58,111,103,26,33)(2,88,59,112,104,27,34)(3,81,60,105,97,28,35)(4,82,61,106,98,29,36)(5,83,62,107,99,30,37)(6,84,63,108,100,31,38)(7,85,64,109,101,32,39)(8,86,57,110,102,25,40)(9,41,77,17,49,94,69)(10,42,78,18,50,95,70)(11,43,79,19,51,96,71)(12,44,80,20,52,89,72)(13,45,73,21,53,90,65)(14,46,74,22,54,91,66)(15,47,75,23,55,92,67)(16,48,76,24,56,93,68), (1,7,5,3)(2,4,6,8)(9,11,13,15)(10,16,14,12)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,39,37,35)(34,36,38,40)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,75,77,79)(74,80,78,76)(81,87,85,83)(82,84,86,88)(89,95,93,91)(90,92,94,96)(97,103,101,99)(98,100,102,104)(105,111,109,107)(106,108,110,112), (1,2)(3,4)(5,6)(7,8)(9,16)(10,11)(12,13)(14,15)(17,24)(18,19)(20,21)(22,23)(25,32)(26,27)(28,29)(30,31)(33,34)(35,36)(37,38)(39,40)(41,48)(42,43)(44,45)(46,47)(49,56)(50,51)(52,53)(54,55)(57,64)(58,59)(60,61)(62,63)(65,72)(66,67)(68,69)(70,71)(73,80)(74,75)(76,77)(78,79)(81,82)(83,84)(85,86)(87,88)(89,90)(91,92)(93,94)(95,96)(97,98)(99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,42,5,46)(2,45,6,41)(3,48,7,44)(4,43,8,47)(9,34,13,38)(10,37,14,33)(11,40,15,36)(12,35,16,39)(17,59,21,63)(18,62,22,58)(19,57,23,61)(20,60,24,64)(25,67,29,71)(26,70,30,66)(27,65,31,69)(28,68,32,72)(49,112,53,108)(50,107,54,111)(51,110,55,106)(52,105,56,109)(73,84,77,88)(74,87,78,83)(75,82,79,86)(76,85,80,81)(89,97,93,101)(90,100,94,104)(91,103,95,99)(92,98,96,102) );

G=PermutationGroup([[(1,87,58,111,103,26,33),(2,88,59,112,104,27,34),(3,81,60,105,97,28,35),(4,82,61,106,98,29,36),(5,83,62,107,99,30,37),(6,84,63,108,100,31,38),(7,85,64,109,101,32,39),(8,86,57,110,102,25,40),(9,41,77,17,49,94,69),(10,42,78,18,50,95,70),(11,43,79,19,51,96,71),(12,44,80,20,52,89,72),(13,45,73,21,53,90,65),(14,46,74,22,54,91,66),(15,47,75,23,55,92,67),(16,48,76,24,56,93,68)], [(1,7,5,3),(2,4,6,8),(9,11,13,15),(10,16,14,12),(17,19,21,23),(18,24,22,20),(25,27,29,31),(26,32,30,28),(33,39,37,35),(34,36,38,40),(41,43,45,47),(42,48,46,44),(49,51,53,55),(50,56,54,52),(57,59,61,63),(58,64,62,60),(65,67,69,71),(66,72,70,68),(73,75,77,79),(74,80,78,76),(81,87,85,83),(82,84,86,88),(89,95,93,91),(90,92,94,96),(97,103,101,99),(98,100,102,104),(105,111,109,107),(106,108,110,112)], [(1,2),(3,4),(5,6),(7,8),(9,16),(10,11),(12,13),(14,15),(17,24),(18,19),(20,21),(22,23),(25,32),(26,27),(28,29),(30,31),(33,34),(35,36),(37,38),(39,40),(41,48),(42,43),(44,45),(46,47),(49,56),(50,51),(52,53),(54,55),(57,64),(58,59),(60,61),(62,63),(65,72),(66,67),(68,69),(70,71),(73,80),(74,75),(76,77),(78,79),(81,82),(83,84),(85,86),(87,88),(89,90),(91,92),(93,94),(95,96),(97,98),(99,100),(101,102),(103,104),(105,106),(107,108),(109,110),(111,112)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,42,5,46),(2,45,6,41),(3,48,7,44),(4,43,8,47),(9,34,13,38),(10,37,14,33),(11,40,15,36),(12,35,16,39),(17,59,21,63),(18,62,22,58),(19,57,23,61),(20,60,24,64),(25,67,29,71),(26,70,30,66),(27,65,31,69),(28,68,32,72),(49,112,53,108),(50,107,54,111),(51,110,55,106),(52,105,56,109),(73,84,77,88),(74,87,78,83),(75,82,79,86),(76,85,80,81),(89,97,93,101),(90,100,94,104),(91,103,95,99),(92,98,96,102)]])

112 conjugacy classes

class 1 2A2B2C2D4A4B4C···4H4I7A···7F8A8B14A···14F14G···14L14M···14X28A···28L28M···28AV28AW···28BB56A···56L
order12222444···447···78814···1414···1414···1428···2828···2828···2856···56
size11244224···481···1881···12···24···42···24···48···88···8

112 irreducible representations

dim11111111111122222244
type+++++++++-
imageC1C2C2C2C2C2C7C14C14C14C14C14D4D4D4C7×D4C7×D4C7×D4D4.10D4C7×D4.10D4
kernelC7×D4.10D4C7×C4.10D4C7×C4≀C2C7×C4⋊Q8C7×C8.C22C7×2- 1+4D4.10D4C4.10D4C4≀C2C4⋊Q8C8.C222- 1+4C2×C28C7×D4C7×Q8C2×C4D4Q8C7C1
# reps11212166126126222121212212

Matrix representation of C7×D4.10D4 in GL4(𝔽113) generated by

30000
03000
00300
00030
,
0100
112000
9103112111
576611
,
112891463
101516478
748800
31828263
,
12624935
112891463
748800
91539412
,
883900
392500
1249950
25643914
G:=sub<GL(4,GF(113))| [30,0,0,0,0,30,0,0,0,0,30,0,0,0,0,30],[0,112,9,57,1,0,103,66,0,0,112,1,0,0,111,1],[112,101,74,31,89,51,88,82,14,64,0,82,63,78,0,63],[12,112,74,91,62,89,88,53,49,14,0,94,35,63,0,12],[88,39,1,25,39,25,24,64,0,0,99,39,0,0,50,14] >;

C7×D4.10D4 in GAP, Magma, Sage, TeX

C_7\times D_4._{10}D_4
% in TeX

G:=Group("C7xD4.10D4");
// GroupNames label

G:=SmallGroup(448,864);
// by ID

G=gap.SmallGroup(448,864);
# by ID

G:=PCGroup([7,-2,-2,-2,-7,-2,-2,-2,1568,813,2438,1192,9804,4911,2468,172,7068]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^4=c^2=1,d^4=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=b*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽