Extensions 1→N→G→Q→1 with N=C16 and Q=Dic7

Direct product G=N×Q with N=C16 and Q=Dic7

Semidirect products G=N:Q with N=C16 and Q=Dic7
extensionφ:Q→Aut NdρLabelID
C161Dic7 = C16⋊Dic7φ: Dic7/C7C4 ⊆ Aut C161124C16:1Dic7448,70
C162Dic7 = C112⋊C4φ: Dic7/C7C4 ⊆ Aut C161124C16:2Dic7448,69
C163Dic7 = C1125C4φ: Dic7/C14C2 ⊆ Aut C16448C16:3Dic7448,61
C164Dic7 = C1126C4φ: Dic7/C14C2 ⊆ Aut C16448C16:4Dic7448,62
C165Dic7 = C1129C4φ: Dic7/C14C2 ⊆ Aut C16448C16:5Dic7448,59

Non-split extensions G=N.Q with N=C16 and Q=Dic7
extensionφ:Q→Aut NdρLabelID
C16.1Dic7 = C112.C4φ: Dic7/C14C2 ⊆ Aut C162242C16.1Dic7448,63
C16.2Dic7 = C7⋊M6(2)φ: Dic7/C14C2 ⊆ Aut C162242C16.2Dic7448,56
C16.3Dic7 = C7⋊C64central extension (φ=1)4482C16.3Dic7448,1
C16.4Dic7 = C2×C7⋊C32central extension (φ=1)448C16.4Dic7448,55