Copied to
clipboard

G = C16⋊Dic7order 448 = 26·7

1st semidirect product of C16 and Dic7 acting via Dic7/C7=C4

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C1121C4, C56.1Q8, C161Dic7, C28.6SD16, C8.3Dic14, M5(2).1D7, C73(C8.Q8), (C2×C4).8D28, C56.72(C2×C4), (C2×C28).98D4, (C2×C8).45D14, C28.26(C4⋊C4), C8⋊Dic7.1C2, C8.18(C2×Dic7), (C2×C14).7SD16, C14.6(C4.Q8), C2.3(C8⋊Dic7), C56.C4.5C2, C4.11(C56⋊C2), (C2×C56).49C22, C4.11(C4⋊Dic7), (C7×M5(2)).1C2, C22.5(C56⋊C2), SmallGroup(448,70)

Series: Derived Chief Lower central Upper central

C1C56 — C16⋊Dic7
C1C7C14C28C2×C28C2×C56C8⋊Dic7 — C16⋊Dic7
C7C14C28C56 — C16⋊Dic7
C1C2C2×C4C2×C8M5(2)

Generators and relations for C16⋊Dic7
 G = < a,b,c | a16=b14=1, c2=b7, bab-1=a9, cac-1=a11, cbc-1=b-1 >

2C2
56C4
2C14
28C8
28C2×C4
8Dic7
14M4(2)
14C4⋊C4
4C2×Dic7
4C7⋊C8
7C4.Q8
7C8.C4
2C4.Dic7
2C4⋊Dic7
7C8.Q8

Smallest permutation representation of C16⋊Dic7
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 93 78 49 100 21 47)(2 86 79 58 101 30 48 10 94 71 50 109 22 40)(3 95 80 51 102 23 33)(4 88 65 60 103 32 34 12 96 73 52 111 24 42)(5 81 66 53 104 25 35)(6 90 67 62 105 18 36 14 82 75 54 97 26 44)(7 83 68 55 106 27 37)(8 92 69 64 107 20 38 16 84 77 56 99 28 46)(9 85 70 57 108 29 39)(11 87 72 59 110 31 41)(13 89 74 61 112 17 43)(15 91 76 63 98 19 45)
(2 4 10 12)(3 7)(5 13)(6 16 14 8)(11 15)(17 66)(18 69 26 77)(19 72)(20 75 28 67)(21 78)(22 65 30 73)(23 68)(24 71 32 79)(25 74)(27 80)(29 70)(31 76)(33 83)(34 86 42 94)(35 89)(36 92 44 84)(37 95)(38 82 46 90)(39 85)(40 88 48 96)(41 91)(43 81)(45 87)(47 93)(49 100)(50 103 58 111)(51 106)(52 109 60 101)(53 112)(54 99 62 107)(55 102)(56 105 64 97)(57 108)(59 98)(61 104)(63 110)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,93,78,49,100,21,47)(2,86,79,58,101,30,48,10,94,71,50,109,22,40)(3,95,80,51,102,23,33)(4,88,65,60,103,32,34,12,96,73,52,111,24,42)(5,81,66,53,104,25,35)(6,90,67,62,105,18,36,14,82,75,54,97,26,44)(7,83,68,55,106,27,37)(8,92,69,64,107,20,38,16,84,77,56,99,28,46)(9,85,70,57,108,29,39)(11,87,72,59,110,31,41)(13,89,74,61,112,17,43)(15,91,76,63,98,19,45), (2,4,10,12)(3,7)(5,13)(6,16,14,8)(11,15)(17,66)(18,69,26,77)(19,72)(20,75,28,67)(21,78)(22,65,30,73)(23,68)(24,71,32,79)(25,74)(27,80)(29,70)(31,76)(33,83)(34,86,42,94)(35,89)(36,92,44,84)(37,95)(38,82,46,90)(39,85)(40,88,48,96)(41,91)(43,81)(45,87)(47,93)(49,100)(50,103,58,111)(51,106)(52,109,60,101)(53,112)(54,99,62,107)(55,102)(56,105,64,97)(57,108)(59,98)(61,104)(63,110)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,93,78,49,100,21,47)(2,86,79,58,101,30,48,10,94,71,50,109,22,40)(3,95,80,51,102,23,33)(4,88,65,60,103,32,34,12,96,73,52,111,24,42)(5,81,66,53,104,25,35)(6,90,67,62,105,18,36,14,82,75,54,97,26,44)(7,83,68,55,106,27,37)(8,92,69,64,107,20,38,16,84,77,56,99,28,46)(9,85,70,57,108,29,39)(11,87,72,59,110,31,41)(13,89,74,61,112,17,43)(15,91,76,63,98,19,45), (2,4,10,12)(3,7)(5,13)(6,16,14,8)(11,15)(17,66)(18,69,26,77)(19,72)(20,75,28,67)(21,78)(22,65,30,73)(23,68)(24,71,32,79)(25,74)(27,80)(29,70)(31,76)(33,83)(34,86,42,94)(35,89)(36,92,44,84)(37,95)(38,82,46,90)(39,85)(40,88,48,96)(41,91)(43,81)(45,87)(47,93)(49,100)(50,103,58,111)(51,106)(52,109,60,101)(53,112)(54,99,62,107)(55,102)(56,105,64,97)(57,108)(59,98)(61,104)(63,110) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,93,78,49,100,21,47),(2,86,79,58,101,30,48,10,94,71,50,109,22,40),(3,95,80,51,102,23,33),(4,88,65,60,103,32,34,12,96,73,52,111,24,42),(5,81,66,53,104,25,35),(6,90,67,62,105,18,36,14,82,75,54,97,26,44),(7,83,68,55,106,27,37),(8,92,69,64,107,20,38,16,84,77,56,99,28,46),(9,85,70,57,108,29,39),(11,87,72,59,110,31,41),(13,89,74,61,112,17,43),(15,91,76,63,98,19,45)], [(2,4,10,12),(3,7),(5,13),(6,16,14,8),(11,15),(17,66),(18,69,26,77),(19,72),(20,75,28,67),(21,78),(22,65,30,73),(23,68),(24,71,32,79),(25,74),(27,80),(29,70),(31,76),(33,83),(34,86,42,94),(35,89),(36,92,44,84),(37,95),(38,82,46,90),(39,85),(40,88,48,96),(41,91),(43,81),(45,87),(47,93),(49,100),(50,103,58,111),(51,106),(52,109,60,101),(53,112),(54,99,62,107),(55,102),(56,105,64,97),(57,108),(59,98),(61,104),(63,110)]])

76 conjugacy classes

class 1 2A2B4A4B4C4D7A7B7C8A8B8C8D8E14A14B14C14D14E14F16A16B16C16D28A···28F28G28H28I56A···56L56M···56R112A···112X
order1224444777888881414141414141616161628···2828282856···5656···56112···112
size112225656222224565622244444442···24442···24···44···4

76 irreducible representations

dim111112222222222244
type++++-++-+-+
imageC1C2C2C2C4Q8D4D7SD16SD16Dic7D14Dic14D28C56⋊C2C56⋊C2C8.Q8C16⋊Dic7
kernelC16⋊Dic7C8⋊Dic7C56.C4C7×M5(2)C112C56C2×C28M5(2)C28C2×C14C16C2×C8C8C2×C4C4C22C7C1
# reps111141132263661212212

Matrix representation of C16⋊Dic7 in GL4(𝔽113) generated by

50421110
71890111
4736371
40964224
,
0100
112900
71890112
24811104
,
1000
911200
17736371
0967350
G:=sub<GL(4,GF(113))| [50,71,4,40,42,89,73,96,111,0,63,42,0,111,71,24],[0,112,71,24,1,9,89,81,0,0,0,1,0,0,112,104],[1,9,17,0,0,112,73,96,0,0,63,73,0,0,71,50] >;

C16⋊Dic7 in GAP, Magma, Sage, TeX

C_{16}\rtimes {\rm Dic}_7
% in TeX

G:=Group("C16:Dic7");
// GroupNames label

G:=SmallGroup(448,70);
// by ID

G=gap.SmallGroup(448,70);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,141,64,387,675,80,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^16=b^14=1,c^2=b^7,b*a*b^-1=a^9,c*a*c^-1=a^11,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C16⋊Dic7 in TeX

׿
×
𝔽