Extensions 1→N→G→Q→1 with N=C8xDic7 and Q=C2

Direct product G=NxQ with N=C8xDic7 and Q=C2
dρLabelID
C2xC8xDic7448C2xC8xDic7448,632

Semidirect products G=N:Q with N=C8xDic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8xDic7):1C2 = D56:7C4φ: C2/C1C2 ⊆ Out C8xDic71124(C8xDic7):1C2448,429
(C8xDic7):2C2 = D8:5Dic7φ: C2/C1C2 ⊆ Out C8xDic71124(C8xDic7):2C2448,730
(C8xDic7):3C2 = Dic7:5D8φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):3C2448,406
(C8xDic7):4C2 = D8xDic7φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):4C2448,683
(C8xDic7):5C2 = C56:5D4φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):5C2448,685
(C8xDic7):6C2 = C56.22D4φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):6C2448,689
(C8xDic7):7C2 = C56.28D4φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):7C2448,725
(C8xDic7):8C2 = Dic7:8SD16φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):8C2448,386
(C8xDic7):9C2 = SD16xDic7φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):9C2448,695
(C8xDic7):10C2 = C56.43D4φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):10C2448,702
(C8xDic7):11C2 = C56:15D4φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):11C2448,709
(C8xDic7):12C2 = D14.C42φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):12C2448,223
(C8xDic7):13C2 = Dic7.5M4(2)φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):13C2448,252
(C8xDic7):14C2 = C56:C4:C2φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):14C2448,254
(C8xDic7):15C2 = C7:D4:C8φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):15C2448,259
(C8xDic7):16C2 = Dic7:M4(2)φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):16C2448,263
(C8xDic7):17C2 = Dic7:4D8φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):17C2448,290
(C8xDic7):18C2 = Dic7:6SD16φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):18C2448,292
(C8xDic7):19C2 = Dic7.SD16φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):19C2448,294
(C8xDic7):20C2 = (C8xDic7):C2φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):20C2448,302
(C8xDic7):21C2 = Dic7:7SD16φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):21C2448,322
(C8xDic7):22C2 = Q8:Dic7:C2φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):22C2448,334
(C8xDic7):23C2 = C42.200D14φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):23C2448,367
(C8xDic7):24C2 = C42.31D14φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):24C2448,374
(C8xDic7):25C2 = C28.12C42φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):25C2448,635
(C8xDic7):26C2 = C8xC7:D4φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):26C2448,643
(C8xDic7):27C2 = Dic7.C42φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):27C2448,241
(C8xDic7):28C2 = D14.4C42φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):28C2448,242
(C8xDic7):29C2 = M4(2)xDic7φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):29C2448,651
(C8xDic7):30C2 = C28.7C42φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):30C2448,656
(C8xDic7):31C2 = C56:18D4φ: C2/C1C2 ⊆ Out C8xDic7224(C8xDic7):31C2448,662
(C8xDic7):32C2 = C56.93D4φ: C2/C1C2 ⊆ Out C8xDic71124(C8xDic7):32C2448,678
(C8xDic7):33C2 = D7xC4xC8φ: trivial image224(C8xDic7):33C2448,218

Non-split extensions G=N.Q with N=C8xDic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8xDic7).1C2 = Dic28:6C4φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).1C2448,407
(C8xDic7).2C2 = C56:2Q8φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).2C2448,408
(C8xDic7).3C2 = C56.4Q8φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).3C2448,412
(C8xDic7).4C2 = C56.26D4φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).4C2448,715
(C8xDic7).5C2 = Q16xDic7φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).5C2448,717
(C8xDic7).6C2 = C56:5Q8φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).6C2448,389
(C8xDic7).7C2 = C56.8Q8φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).7C2448,392
(C8xDic7).8C2 = Dic7:C16φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).8C2448,58
(C8xDic7).9C2 = C112:9C4φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).9C2448,59
(C8xDic7).10C2 = C8xDic14φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).10C2448,212
(C8xDic7).11C2 = Dic7:4Q16φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).11C2448,324
(C8xDic7).12C2 = Dic7.1Q16φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).12C2448,326
(C8xDic7).13C2 = C42.27D14φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).13C2448,362
(C8xDic7).14C2 = Dic14:C8φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).14C2448,364
(C8xDic7).15C2 = C56.9Q8φ: C2/C1C2 ⊆ Out C8xDic71124(C8xDic7).15C2448,68
(C8xDic7).16C2 = C56:Q8φ: C2/C1C2 ⊆ Out C8xDic7448(C8xDic7).16C2448,235
(C8xDic7).17C2 = C16xDic7φ: trivial image448(C8xDic7).17C2448,57

׿
x
:
Z
F
o
wr
Q
<