Copied to
clipboard

G = D567C4order 448 = 26·7

7th semidirect product of D56 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D567C4, Dic287C4, M4(2).27D14, C73(C8○D8), C7⋊C8.38D4, C56⋊C26C4, C8.16(C4×D7), C56.35(C2×C4), (C8×Dic7)⋊1C2, C4.213(D4×D7), C14.56(C4×D4), C8.C48D7, D284C48C2, D28.C411C2, D28.11(C2×C4), (C2×C8).252D14, C28.372(C2×D4), D567C2.5C2, (C2×C56).42C22, C28.55(C22×C4), (C2×C28).311C23, Dic14.11(C2×C4), C4○D28.18C22, C2.16(D28⋊C4), C22.2(Q82D7), (C4×Dic7).235C22, (C7×M4(2)).21C22, C4.47(C2×C4×D7), (C7×C8.C4)⋊5C2, (C2×C14).2(C4○D4), (C2×C7⋊C8).238C22, (C2×C4).414(C22×D7), SmallGroup(448,429)

Series: Derived Chief Lower central Upper central

C1C28 — D567C4
C1C7C14C28C2×C28C4○D28D567C2 — D567C4
C7C14C28 — D567C4
C1C4C2×C4C8.C4

Generators and relations for D567C4
 G = < a,b,c | a56=b2=c4=1, bab=a-1, cac-1=a41, cbc-1=a54b >

Subgroups: 508 in 106 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, Q8, D7, C14, C14, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, Dic7, C28, D14, C2×C14, C4×C8, C4≀C2, C8.C4, C8○D4, C4○D8, C7⋊C8, C56, C56, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C8○D8, C8×D7, C8⋊D7, C56⋊C2, D56, Dic28, C2×C7⋊C8, C4×Dic7, C2×C56, C7×M4(2), C4○D28, C8×Dic7, D284C4, C7×C8.C4, D567C2, D28.C4, D567C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, C22×D7, C8○D8, C2×C4×D7, D4×D7, Q82D7, D28⋊C4, D567C4

Smallest permutation representation of D567C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 61)(2 60)(3 59)(4 58)(5 57)(6 112)(7 111)(8 110)(9 109)(10 108)(11 107)(12 106)(13 105)(14 104)(15 103)(16 102)(17 101)(18 100)(19 99)(20 98)(21 97)(22 96)(23 95)(24 94)(25 93)(26 92)(27 91)(28 90)(29 89)(30 88)(31 87)(32 86)(33 85)(34 84)(35 83)(36 82)(37 81)(38 80)(39 79)(40 78)(41 77)(42 76)(43 75)(44 74)(45 73)(46 72)(47 71)(48 70)(49 69)(50 68)(51 67)(52 66)(53 65)(54 64)(55 63)(56 62)
(1 29)(2 14)(3 55)(4 40)(5 25)(6 10)(7 51)(8 36)(9 21)(11 47)(12 32)(13 17)(15 43)(16 28)(18 54)(19 39)(20 24)(22 50)(23 35)(26 46)(27 31)(30 42)(33 53)(34 38)(37 49)(41 45)(44 56)(48 52)(57 67 85 95)(58 108 86 80)(59 93 87 65)(60 78 88 106)(61 63 89 91)(62 104 90 76)(64 74 92 102)(66 100 94 72)(68 70 96 98)(69 111 97 83)(71 81 99 109)(73 107 101 79)(75 77 103 105)(82 84 110 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,61)(2,60)(3,59)(4,58)(5,57)(6,112)(7,111)(8,110)(9,109)(10,108)(11,107)(12,106)(13,105)(14,104)(15,103)(16,102)(17,101)(18,100)(19,99)(20,98)(21,97)(22,96)(23,95)(24,94)(25,93)(26,92)(27,91)(28,90)(29,89)(30,88)(31,87)(32,86)(33,85)(34,84)(35,83)(36,82)(37,81)(38,80)(39,79)(40,78)(41,77)(42,76)(43,75)(44,74)(45,73)(46,72)(47,71)(48,70)(49,69)(50,68)(51,67)(52,66)(53,65)(54,64)(55,63)(56,62), (1,29)(2,14)(3,55)(4,40)(5,25)(6,10)(7,51)(8,36)(9,21)(11,47)(12,32)(13,17)(15,43)(16,28)(18,54)(19,39)(20,24)(22,50)(23,35)(26,46)(27,31)(30,42)(33,53)(34,38)(37,49)(41,45)(44,56)(48,52)(57,67,85,95)(58,108,86,80)(59,93,87,65)(60,78,88,106)(61,63,89,91)(62,104,90,76)(64,74,92,102)(66,100,94,72)(68,70,96,98)(69,111,97,83)(71,81,99,109)(73,107,101,79)(75,77,103,105)(82,84,110,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,61)(2,60)(3,59)(4,58)(5,57)(6,112)(7,111)(8,110)(9,109)(10,108)(11,107)(12,106)(13,105)(14,104)(15,103)(16,102)(17,101)(18,100)(19,99)(20,98)(21,97)(22,96)(23,95)(24,94)(25,93)(26,92)(27,91)(28,90)(29,89)(30,88)(31,87)(32,86)(33,85)(34,84)(35,83)(36,82)(37,81)(38,80)(39,79)(40,78)(41,77)(42,76)(43,75)(44,74)(45,73)(46,72)(47,71)(48,70)(49,69)(50,68)(51,67)(52,66)(53,65)(54,64)(55,63)(56,62), (1,29)(2,14)(3,55)(4,40)(5,25)(6,10)(7,51)(8,36)(9,21)(11,47)(12,32)(13,17)(15,43)(16,28)(18,54)(19,39)(20,24)(22,50)(23,35)(26,46)(27,31)(30,42)(33,53)(34,38)(37,49)(41,45)(44,56)(48,52)(57,67,85,95)(58,108,86,80)(59,93,87,65)(60,78,88,106)(61,63,89,91)(62,104,90,76)(64,74,92,102)(66,100,94,72)(68,70,96,98)(69,111,97,83)(71,81,99,109)(73,107,101,79)(75,77,103,105)(82,84,110,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,61),(2,60),(3,59),(4,58),(5,57),(6,112),(7,111),(8,110),(9,109),(10,108),(11,107),(12,106),(13,105),(14,104),(15,103),(16,102),(17,101),(18,100),(19,99),(20,98),(21,97),(22,96),(23,95),(24,94),(25,93),(26,92),(27,91),(28,90),(29,89),(30,88),(31,87),(32,86),(33,85),(34,84),(35,83),(36,82),(37,81),(38,80),(39,79),(40,78),(41,77),(42,76),(43,75),(44,74),(45,73),(46,72),(47,71),(48,70),(49,69),(50,68),(51,67),(52,66),(53,65),(54,64),(55,63),(56,62)], [(1,29),(2,14),(3,55),(4,40),(5,25),(6,10),(7,51),(8,36),(9,21),(11,47),(12,32),(13,17),(15,43),(16,28),(18,54),(19,39),(20,24),(22,50),(23,35),(26,46),(27,31),(30,42),(33,53),(34,38),(37,49),(41,45),(44,56),(48,52),(57,67,85,95),(58,108,86,80),(59,93,87,65),(60,78,88,106),(61,63,89,91),(62,104,90,76),(64,74,92,102),(66,100,94,72),(68,70,96,98),(69,111,97,83),(71,81,99,109),(73,107,101,79),(75,77,103,105),(82,84,110,112)]])

70 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I7A7B7C8A8B8C8D8E8F8G8H8I8J8K8L8M8N14A14B14C14D14E14F28A···28F28G28H28I56A···56L56M···56X
order122224444444447778888888888888814141414141428···2828282856···5656···56
size112282811214141414282822222224444777714142224442···24444···48···8

70 irreducible representations

dim1111111112222222444
type++++++++++++
imageC1C2C2C2C2C2C4C4C4D4D7C4○D4D14D14C4×D7C8○D8D4×D7Q82D7D567C4
kernelD567C4C8×Dic7D284C4C7×C8.C4D567C2D28.C4C56⋊C2D56Dic28C7⋊C8C8.C4C2×C14C2×C8M4(2)C8C7C4C22C1
# reps112112422232361283312

Matrix representation of D567C4 in GL4(𝔽113) generated by

7911200
1000
00180
00044
,
7911200
253400
00098
00150
,
1000
7911200
001120
00015
G:=sub<GL(4,GF(113))| [79,1,0,0,112,0,0,0,0,0,18,0,0,0,0,44],[79,25,0,0,112,34,0,0,0,0,0,15,0,0,98,0],[1,79,0,0,0,112,0,0,0,0,112,0,0,0,0,15] >;

D567C4 in GAP, Magma, Sage, TeX

D_{56}\rtimes_7C_4
% in TeX

G:=Group("D56:7C4");
// GroupNames label

G:=SmallGroup(448,429);
// by ID

G=gap.SmallGroup(448,429);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,120,555,58,136,1684,438,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^41,c*b*c^-1=a^54*b>;
// generators/relations

׿
×
𝔽