metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C56.93D4, M4(2).36D14, D4⋊D7⋊7C4, C8○D4⋊6D7, C7⋊4(C8○D8), Q8⋊D7⋊7C4, D4.D7⋊7C4, C7⋊Q16⋊7C4, D4.7(C4×D7), Q8.7(C4×D7), C14.81(C4×D4), (C8×Dic7)⋊32C2, C4○D4.34D14, D28.18(C2×C4), (C2×C8).278D14, C28.447(C2×D4), C8.22(C7⋊D4), D28⋊4C4⋊15C2, C28.29(C22×C4), D4⋊2Dic7⋊15C2, D28.2C4⋊13C2, C28.53D4⋊15C2, (C2×C56).236C22, (C2×C28).424C23, Dic14.18(C2×C4), D4.8D14.4C2, C4○D28.44C22, C22.3(C4○D28), C4.Dic7.44C22, (C4×Dic7).236C22, (C7×M4(2)).39C22, C4.29(C2×C4×D7), (C7×C8○D4)⋊6C2, C7⋊C8.10(C2×C4), C2.26(C4×C7⋊D4), (C7×D4).14(C2×C4), C4.138(C2×C7⋊D4), (C7×Q8).14(C2×C4), (C2×C14).9(C4○D4), (C2×C7⋊C8).267C22, (C7×C4○D4).39C22, (C2×C4).514(C22×D7), SmallGroup(448,678)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C56.93D4
G = < a,b,c | a56=c2=1, b4=a28, bab-1=cac=a41, cbc=a28b3 >
Subgroups: 412 in 106 conjugacy classes, 47 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, D7, C14, C14, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4×C8, C4≀C2, C8.C4, C8○D4, C8○D4, C4○D8, C7⋊C8, C7⋊C8, C56, C56, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C8○D8, C8×D7, C8⋊D7, C2×C7⋊C8, C4.Dic7, C4×Dic7, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C2×C56, C2×C56, C7×M4(2), C7×M4(2), C4○D28, C7×C4○D4, C8×Dic7, C28.53D4, D28⋊4C4, D4⋊2Dic7, D28.2C4, D4.8D14, C7×C8○D4, C56.93D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, C7⋊D4, C22×D7, C8○D8, C2×C4×D7, C4○D28, C2×C7⋊D4, C4×C7⋊D4, C56.93D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 50 43 36 29 22 15 8)(2 35 44 21 30 7 16 49)(3 20 45 6 31 48 17 34)(4 5 46 47 32 33 18 19)(9 42 51 28 37 14 23 56)(10 27 52 13 38 55 24 41)(11 12 53 54 39 40 25 26)(57 104 71 62 85 76 99 90)(58 89 72 103 86 61 100 75)(59 74 73 88 87 102 101 60)(63 70 77 84 91 98 105 112)(64 111 78 69 92 83 106 97)(65 96 79 110 93 68 107 82)(66 81 80 95 94 109 108 67)
(1 98)(2 83)(3 68)(4 109)(5 94)(6 79)(7 64)(8 105)(9 90)(10 75)(11 60)(12 101)(13 86)(14 71)(15 112)(16 97)(17 82)(18 67)(19 108)(20 93)(21 78)(22 63)(23 104)(24 89)(25 74)(26 59)(27 100)(28 85)(29 70)(30 111)(31 96)(32 81)(33 66)(34 107)(35 92)(36 77)(37 62)(38 103)(39 88)(40 73)(41 58)(42 99)(43 84)(44 69)(45 110)(46 95)(47 80)(48 65)(49 106)(50 91)(51 76)(52 61)(53 102)(54 87)(55 72)(56 57)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,50,43,36,29,22,15,8)(2,35,44,21,30,7,16,49)(3,20,45,6,31,48,17,34)(4,5,46,47,32,33,18,19)(9,42,51,28,37,14,23,56)(10,27,52,13,38,55,24,41)(11,12,53,54,39,40,25,26)(57,104,71,62,85,76,99,90)(58,89,72,103,86,61,100,75)(59,74,73,88,87,102,101,60)(63,70,77,84,91,98,105,112)(64,111,78,69,92,83,106,97)(65,96,79,110,93,68,107,82)(66,81,80,95,94,109,108,67), (1,98)(2,83)(3,68)(4,109)(5,94)(6,79)(7,64)(8,105)(9,90)(10,75)(11,60)(12,101)(13,86)(14,71)(15,112)(16,97)(17,82)(18,67)(19,108)(20,93)(21,78)(22,63)(23,104)(24,89)(25,74)(26,59)(27,100)(28,85)(29,70)(30,111)(31,96)(32,81)(33,66)(34,107)(35,92)(36,77)(37,62)(38,103)(39,88)(40,73)(41,58)(42,99)(43,84)(44,69)(45,110)(46,95)(47,80)(48,65)(49,106)(50,91)(51,76)(52,61)(53,102)(54,87)(55,72)(56,57)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,50,43,36,29,22,15,8)(2,35,44,21,30,7,16,49)(3,20,45,6,31,48,17,34)(4,5,46,47,32,33,18,19)(9,42,51,28,37,14,23,56)(10,27,52,13,38,55,24,41)(11,12,53,54,39,40,25,26)(57,104,71,62,85,76,99,90)(58,89,72,103,86,61,100,75)(59,74,73,88,87,102,101,60)(63,70,77,84,91,98,105,112)(64,111,78,69,92,83,106,97)(65,96,79,110,93,68,107,82)(66,81,80,95,94,109,108,67), (1,98)(2,83)(3,68)(4,109)(5,94)(6,79)(7,64)(8,105)(9,90)(10,75)(11,60)(12,101)(13,86)(14,71)(15,112)(16,97)(17,82)(18,67)(19,108)(20,93)(21,78)(22,63)(23,104)(24,89)(25,74)(26,59)(27,100)(28,85)(29,70)(30,111)(31,96)(32,81)(33,66)(34,107)(35,92)(36,77)(37,62)(38,103)(39,88)(40,73)(41,58)(42,99)(43,84)(44,69)(45,110)(46,95)(47,80)(48,65)(49,106)(50,91)(51,76)(52,61)(53,102)(54,87)(55,72)(56,57) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,50,43,36,29,22,15,8),(2,35,44,21,30,7,16,49),(3,20,45,6,31,48,17,34),(4,5,46,47,32,33,18,19),(9,42,51,28,37,14,23,56),(10,27,52,13,38,55,24,41),(11,12,53,54,39,40,25,26),(57,104,71,62,85,76,99,90),(58,89,72,103,86,61,100,75),(59,74,73,88,87,102,101,60),(63,70,77,84,91,98,105,112),(64,111,78,69,92,83,106,97),(65,96,79,110,93,68,107,82),(66,81,80,95,94,109,108,67)], [(1,98),(2,83),(3,68),(4,109),(5,94),(6,79),(7,64),(8,105),(9,90),(10,75),(11,60),(12,101),(13,86),(14,71),(15,112),(16,97),(17,82),(18,67),(19,108),(20,93),(21,78),(22,63),(23,104),(24,89),(25,74),(26,59),(27,100),(28,85),(29,70),(30,111),(31,96),(32,81),(33,66),(34,107),(35,92),(36,77),(37,62),(38,103),(39,88),(40,73),(41,58),(42,99),(43,84),(44,69),(45,110),(46,95),(47,80),(48,65),(49,106),(50,91),(51,76),(52,61),(53,102),(54,87),(55,72),(56,57)]])
88 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | 14A | 14B | 14C | 14D | ··· | 14L | 28A | ··· | 28F | 28G | ··· | 28O | 56A | ··· | 56L | 56M | ··· | 56AD |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 14 | 14 | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 4 | 28 | 1 | 1 | 2 | 4 | 14 | 14 | 14 | 14 | 28 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 14 | 14 | 14 | 14 | 28 | 28 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
88 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | D7 | C4○D4 | D14 | D14 | D14 | C7⋊D4 | C4×D7 | C4×D7 | C8○D8 | C4○D28 | C56.93D4 |
kernel | C56.93D4 | C8×Dic7 | C28.53D4 | D28⋊4C4 | D4⋊2Dic7 | D28.2C4 | D4.8D14 | C7×C8○D4 | D4⋊D7 | D4.D7 | Q8⋊D7 | C7⋊Q16 | C56 | C8○D4 | C2×C14 | C2×C8 | M4(2) | C4○D4 | C8 | D4 | Q8 | C7 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 3 | 3 | 12 | 6 | 6 | 8 | 12 | 12 |
Matrix representation of C56.93D4 ►in GL4(𝔽113) generated by
80 | 112 | 0 | 0 |
72 | 9 | 0 | 0 |
0 | 0 | 95 | 0 |
0 | 0 | 0 | 95 |
112 | 103 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 95 | 0 |
0 | 0 | 0 | 69 |
1 | 10 | 0 | 0 |
0 | 112 | 0 | 0 |
0 | 0 | 0 | 69 |
0 | 0 | 95 | 0 |
G:=sub<GL(4,GF(113))| [80,72,0,0,112,9,0,0,0,0,95,0,0,0,0,95],[112,0,0,0,103,1,0,0,0,0,95,0,0,0,0,69],[1,0,0,0,10,112,0,0,0,0,0,95,0,0,69,0] >;
C56.93D4 in GAP, Magma, Sage, TeX
C_{56}._{93}D_4
% in TeX
G:=Group("C56.93D4");
// GroupNames label
G:=SmallGroup(448,678);
// by ID
G=gap.SmallGroup(448,678);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,58,136,1684,851,102,18822]);
// Polycyclic
G:=Group<a,b,c|a^56=c^2=1,b^4=a^28,b*a*b^-1=c*a*c=a^41,c*b*c=a^28*b^3>;
// generators/relations