Copied to
clipboard

G = C56.93D4order 448 = 26·7

16th non-split extension by C56 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C56.93D4, M4(2).36D14, D4⋊D77C4, C8○D46D7, C74(C8○D8), Q8⋊D77C4, D4.D77C4, C7⋊Q167C4, D4.7(C4×D7), Q8.7(C4×D7), C14.81(C4×D4), (C8×Dic7)⋊32C2, C4○D4.34D14, D28.18(C2×C4), (C2×C8).278D14, C28.447(C2×D4), C8.22(C7⋊D4), D284C415C2, C28.29(C22×C4), D42Dic715C2, D28.2C413C2, C28.53D415C2, (C2×C56).236C22, (C2×C28).424C23, Dic14.18(C2×C4), D4.8D14.4C2, C4○D28.44C22, C22.3(C4○D28), C4.Dic7.44C22, (C4×Dic7).236C22, (C7×M4(2)).39C22, C4.29(C2×C4×D7), (C7×C8○D4)⋊6C2, C7⋊C8.10(C2×C4), C2.26(C4×C7⋊D4), (C7×D4).14(C2×C4), C4.138(C2×C7⋊D4), (C7×Q8).14(C2×C4), (C2×C14).9(C4○D4), (C2×C7⋊C8).267C22, (C7×C4○D4).39C22, (C2×C4).514(C22×D7), SmallGroup(448,678)

Series: Derived Chief Lower central Upper central

C1C28 — C56.93D4
C1C7C14C28C2×C28C4○D28D4.8D14 — C56.93D4
C7C14C28 — C56.93D4
C1C8C2×C8C8○D4

Generators and relations for C56.93D4
 G = < a,b,c | a56=c2=1, b4=a28, bab-1=cac=a41, cbc=a28b3 >

Subgroups: 412 in 106 conjugacy classes, 47 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, D7, C14, C14, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4×C8, C4≀C2, C8.C4, C8○D4, C8○D4, C4○D8, C7⋊C8, C7⋊C8, C56, C56, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C8○D8, C8×D7, C8⋊D7, C2×C7⋊C8, C4.Dic7, C4×Dic7, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C2×C56, C2×C56, C7×M4(2), C7×M4(2), C4○D28, C7×C4○D4, C8×Dic7, C28.53D4, D284C4, D42Dic7, D28.2C4, D4.8D14, C7×C8○D4, C56.93D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, C7⋊D4, C22×D7, C8○D8, C2×C4×D7, C4○D28, C2×C7⋊D4, C4×C7⋊D4, C56.93D4

Smallest permutation representation of C56.93D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 50 43 36 29 22 15 8)(2 35 44 21 30 7 16 49)(3 20 45 6 31 48 17 34)(4 5 46 47 32 33 18 19)(9 42 51 28 37 14 23 56)(10 27 52 13 38 55 24 41)(11 12 53 54 39 40 25 26)(57 104 71 62 85 76 99 90)(58 89 72 103 86 61 100 75)(59 74 73 88 87 102 101 60)(63 70 77 84 91 98 105 112)(64 111 78 69 92 83 106 97)(65 96 79 110 93 68 107 82)(66 81 80 95 94 109 108 67)
(1 98)(2 83)(3 68)(4 109)(5 94)(6 79)(7 64)(8 105)(9 90)(10 75)(11 60)(12 101)(13 86)(14 71)(15 112)(16 97)(17 82)(18 67)(19 108)(20 93)(21 78)(22 63)(23 104)(24 89)(25 74)(26 59)(27 100)(28 85)(29 70)(30 111)(31 96)(32 81)(33 66)(34 107)(35 92)(36 77)(37 62)(38 103)(39 88)(40 73)(41 58)(42 99)(43 84)(44 69)(45 110)(46 95)(47 80)(48 65)(49 106)(50 91)(51 76)(52 61)(53 102)(54 87)(55 72)(56 57)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,50,43,36,29,22,15,8)(2,35,44,21,30,7,16,49)(3,20,45,6,31,48,17,34)(4,5,46,47,32,33,18,19)(9,42,51,28,37,14,23,56)(10,27,52,13,38,55,24,41)(11,12,53,54,39,40,25,26)(57,104,71,62,85,76,99,90)(58,89,72,103,86,61,100,75)(59,74,73,88,87,102,101,60)(63,70,77,84,91,98,105,112)(64,111,78,69,92,83,106,97)(65,96,79,110,93,68,107,82)(66,81,80,95,94,109,108,67), (1,98)(2,83)(3,68)(4,109)(5,94)(6,79)(7,64)(8,105)(9,90)(10,75)(11,60)(12,101)(13,86)(14,71)(15,112)(16,97)(17,82)(18,67)(19,108)(20,93)(21,78)(22,63)(23,104)(24,89)(25,74)(26,59)(27,100)(28,85)(29,70)(30,111)(31,96)(32,81)(33,66)(34,107)(35,92)(36,77)(37,62)(38,103)(39,88)(40,73)(41,58)(42,99)(43,84)(44,69)(45,110)(46,95)(47,80)(48,65)(49,106)(50,91)(51,76)(52,61)(53,102)(54,87)(55,72)(56,57)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,50,43,36,29,22,15,8)(2,35,44,21,30,7,16,49)(3,20,45,6,31,48,17,34)(4,5,46,47,32,33,18,19)(9,42,51,28,37,14,23,56)(10,27,52,13,38,55,24,41)(11,12,53,54,39,40,25,26)(57,104,71,62,85,76,99,90)(58,89,72,103,86,61,100,75)(59,74,73,88,87,102,101,60)(63,70,77,84,91,98,105,112)(64,111,78,69,92,83,106,97)(65,96,79,110,93,68,107,82)(66,81,80,95,94,109,108,67), (1,98)(2,83)(3,68)(4,109)(5,94)(6,79)(7,64)(8,105)(9,90)(10,75)(11,60)(12,101)(13,86)(14,71)(15,112)(16,97)(17,82)(18,67)(19,108)(20,93)(21,78)(22,63)(23,104)(24,89)(25,74)(26,59)(27,100)(28,85)(29,70)(30,111)(31,96)(32,81)(33,66)(34,107)(35,92)(36,77)(37,62)(38,103)(39,88)(40,73)(41,58)(42,99)(43,84)(44,69)(45,110)(46,95)(47,80)(48,65)(49,106)(50,91)(51,76)(52,61)(53,102)(54,87)(55,72)(56,57) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,50,43,36,29,22,15,8),(2,35,44,21,30,7,16,49),(3,20,45,6,31,48,17,34),(4,5,46,47,32,33,18,19),(9,42,51,28,37,14,23,56),(10,27,52,13,38,55,24,41),(11,12,53,54,39,40,25,26),(57,104,71,62,85,76,99,90),(58,89,72,103,86,61,100,75),(59,74,73,88,87,102,101,60),(63,70,77,84,91,98,105,112),(64,111,78,69,92,83,106,97),(65,96,79,110,93,68,107,82),(66,81,80,95,94,109,108,67)], [(1,98),(2,83),(3,68),(4,109),(5,94),(6,79),(7,64),(8,105),(9,90),(10,75),(11,60),(12,101),(13,86),(14,71),(15,112),(16,97),(17,82),(18,67),(19,108),(20,93),(21,78),(22,63),(23,104),(24,89),(25,74),(26,59),(27,100),(28,85),(29,70),(30,111),(31,96),(32,81),(33,66),(34,107),(35,92),(36,77),(37,62),(38,103),(39,88),(40,73),(41,58),(42,99),(43,84),(44,69),(45,110),(46,95),(47,80),(48,65),(49,106),(50,91),(51,76),(52,61),(53,102),(54,87),(55,72),(56,57)]])

88 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I7A7B7C8A8B8C8D8E8F8G8H8I8J8K8L8M8N14A14B14C14D···14L28A···28F28G···28O56A···56L56M···56AD
order122224444444447778888888888888814141414···1428···2828···2856···5656···56
size11242811241414141428222111122441414141428282224···42···24···42···24···4

88 irreducible representations

dim111111111111222222222224
type+++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D4D7C4○D4D14D14D14C7⋊D4C4×D7C4×D7C8○D8C4○D28C56.93D4
kernelC56.93D4C8×Dic7C28.53D4D284C4D42Dic7D28.2C4D4.8D14C7×C8○D4D4⋊D7D4.D7Q8⋊D7C7⋊Q16C56C8○D4C2×C14C2×C8M4(2)C4○D4C8D4Q8C7C22C1
# reps111111112222232333126681212

Matrix representation of C56.93D4 in GL4(𝔽113) generated by

8011200
72900
00950
00095
,
11210300
0100
00950
00069
,
11000
011200
00069
00950
G:=sub<GL(4,GF(113))| [80,72,0,0,112,9,0,0,0,0,95,0,0,0,0,95],[112,0,0,0,103,1,0,0,0,0,95,0,0,0,0,69],[1,0,0,0,10,112,0,0,0,0,0,95,0,0,69,0] >;

C56.93D4 in GAP, Magma, Sage, TeX

C_{56}._{93}D_4
% in TeX

G:=Group("C56.93D4");
// GroupNames label

G:=SmallGroup(448,678);
// by ID

G=gap.SmallGroup(448,678);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,58,136,1684,851,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=c^2=1,b^4=a^28,b*a*b^-1=c*a*c=a^41,c*b*c=a^28*b^3>;
// generators/relations

׿
×
𝔽