# Extensions 1→N→G→Q→1 with N=C4 and Q=C4×C28

Direct product G=N×Q with N=C4 and Q=C4×C28
dρLabelID
C42×C28448C4^2xC28448,782

Semidirect products G=N:Q with N=C4 and Q=C4×C28
extensionφ:Q→Aut NdρLabelID
C4⋊(C4×C28) = C4⋊C4×C28φ: C4×C28/C2×C28C2 ⊆ Aut C4448C4:(C4xC28)448,786

Non-split extensions G=N.Q with N=C4 and Q=C4×C28
extensionφ:Q→Aut NdρLabelID
C4.1(C4×C28) = C7×C426C4φ: C4×C28/C2×C28C2 ⊆ Aut C4112C4.1(C4xC28)448,143
C4.2(C4×C28) = C7×C22.4Q16φ: C4×C28/C2×C28C2 ⊆ Aut C4448C4.2(C4xC28)448,144
C4.3(C4×C28) = C7×C4.C42φ: C4×C28/C2×C28C2 ⊆ Aut C4224C4.3(C4xC28)448,145
C4.4(C4×C28) = M4(2)×C28φ: C4×C28/C2×C28C2 ⊆ Aut C4224C4.4(C4xC28)448,812
C4.5(C4×C28) = C7×C82M4(2)φ: C4×C28/C2×C28C2 ⊆ Aut C4224C4.5(C4xC28)448,813
C4.6(C4×C28) = C7×C165C4central extension (φ=1)448C4.6(C4xC28)448,150
C4.7(C4×C28) = C7×C424C4central extension (φ=1)448C4.7(C4xC28)448,784
C4.8(C4×C28) = C14×C8⋊C4central extension (φ=1)448C4.8(C4xC28)448,811
C4.9(C4×C28) = C7×C4.9C42central stem extension (φ=1)1124C4.9(C4xC28)448,141
C4.10(C4×C28) = C7×C4.10C42central stem extension (φ=1)1124C4.10(C4xC28)448,142
C4.11(C4×C28) = C7×C16⋊C4central stem extension (φ=1)1124C4.11(C4xC28)448,151

׿
×
𝔽