Extensions 1→N→G→Q→1 with N=C4 and Q=C4xC28

Direct product G=NxQ with N=C4 and Q=C4xC28
dρLabelID
C42xC28448C4^2xC28448,782

Semidirect products G=N:Q with N=C4 and Q=C4xC28
extensionφ:Q→Aut NdρLabelID
C4:(C4xC28) = C4:C4xC28φ: C4xC28/C2xC28C2 ⊆ Aut C4448C4:(C4xC28)448,786

Non-split extensions G=N.Q with N=C4 and Q=C4xC28
extensionφ:Q→Aut NdρLabelID
C4.1(C4xC28) = C7xC42:6C4φ: C4xC28/C2xC28C2 ⊆ Aut C4112C4.1(C4xC28)448,143
C4.2(C4xC28) = C7xC22.4Q16φ: C4xC28/C2xC28C2 ⊆ Aut C4448C4.2(C4xC28)448,144
C4.3(C4xC28) = C7xC4.C42φ: C4xC28/C2xC28C2 ⊆ Aut C4224C4.3(C4xC28)448,145
C4.4(C4xC28) = M4(2)xC28φ: C4xC28/C2xC28C2 ⊆ Aut C4224C4.4(C4xC28)448,812
C4.5(C4xC28) = C7xC8o2M4(2)φ: C4xC28/C2xC28C2 ⊆ Aut C4224C4.5(C4xC28)448,813
C4.6(C4xC28) = C7xC16:5C4central extension (φ=1)448C4.6(C4xC28)448,150
C4.7(C4xC28) = C7xC42:4C4central extension (φ=1)448C4.7(C4xC28)448,784
C4.8(C4xC28) = C14xC8:C4central extension (φ=1)448C4.8(C4xC28)448,811
C4.9(C4xC28) = C7xC4.9C42central stem extension (φ=1)1124C4.9(C4xC28)448,141
C4.10(C4xC28) = C7xC4.10C42central stem extension (φ=1)1124C4.10(C4xC28)448,142
C4.11(C4xC28) = C7xC16:C4central stem extension (φ=1)1124C4.11(C4xC28)448,151

׿
x
:
Z
F
o
wr
Q
<