# Extensions 1→N→G→Q→1 with N=C4 and Q=C7×SD16

Direct product G=N×Q with N=C4 and Q=C7×SD16
dρLabelID
SD16×C28224SD16xC28448,846

Semidirect products G=N:Q with N=C4 and Q=C7×SD16
extensionφ:Q→Aut NdρLabelID
C41(C7×SD16) = C7×C85D4φ: C7×SD16/C56C2 ⊆ Aut C4224C4:1(C7xSD16)448,900
C42(C7×SD16) = C7×D4.D4φ: C7×SD16/C7×D4C2 ⊆ Aut C4224C4:2(C7xSD16)448,869
C43(C7×SD16) = C7×C4⋊SD16φ: C7×SD16/C7×Q8C2 ⊆ Aut C4224C4:3(C7xSD16)448,868

Non-split extensions G=N.Q with N=C4 and Q=C7×SD16
extensionφ:Q→Aut NdρLabelID
C4.1(C7×SD16) = C7×C2.D16φ: C7×SD16/C56C2 ⊆ Aut C4224C4.1(C7xSD16)448,161
C4.2(C7×SD16) = C7×C2.Q32φ: C7×SD16/C56C2 ⊆ Aut C4448C4.2(C7xSD16)448,162
C4.3(C7×SD16) = C7×C4.4D8φ: C7×SD16/C56C2 ⊆ Aut C4224C4.3(C7xSD16)448,894
C4.4(C7×SD16) = C7×C4.SD16φ: C7×SD16/C56C2 ⊆ Aut C4448C4.4(C7xSD16)448,895
C4.5(C7×SD16) = C7×C83Q8φ: C7×SD16/C56C2 ⊆ Aut C4448C4.5(C7xSD16)448,906
C4.6(C7×SD16) = C7×C4.10D8φ: C7×SD16/C7×D4C2 ⊆ Aut C4448C4.6(C7xSD16)448,136
C4.7(C7×SD16) = C7×C4.6Q16φ: C7×SD16/C7×D4C2 ⊆ Aut C4448C4.7(C7xSD16)448,137
C4.8(C7×SD16) = C7×D82C4φ: C7×SD16/C7×D4C2 ⊆ Aut C41124C4.8(C7xSD16)448,164
C4.9(C7×SD16) = C7×C8.Q8φ: C7×SD16/C7×D4C2 ⊆ Aut C41124C4.9(C7xSD16)448,169
C4.10(C7×SD16) = C7×D42Q8φ: C7×SD16/C7×D4C2 ⊆ Aut C4224C4.10(C7xSD16)448,884
C4.11(C7×SD16) = C7×C4.D8φ: C7×SD16/C7×Q8C2 ⊆ Aut C4224C4.11(C7xSD16)448,135
C4.12(C7×SD16) = C7×Q8⋊Q8φ: C7×SD16/C7×Q8C2 ⊆ Aut C4448C4.12(C7xSD16)448,883
C4.13(C7×SD16) = C7×D4⋊C8central extension (φ=1)224C4.13(C7xSD16)448,129
C4.14(C7×SD16) = C7×Q8⋊C8central extension (φ=1)448C4.14(C7xSD16)448,130
C4.15(C7×SD16) = C7×C82C8central extension (φ=1)448C4.15(C7xSD16)448,138

׿
×
𝔽