Copied to
clipboard

G = C7×C8.Q8order 448 = 26·7

Direct product of C7 and C8.Q8

direct product, metacyclic, nilpotent (class 4), monomial, 2-elementary

Aliases: C7×C8.Q8, C161C28, C1123C4, C56.10Q8, C28.44SD16, M5(2).1C14, C8.(C7×Q8), C56.86(C2×C4), C8.18(C2×C28), C28.55(C4⋊C4), C4.Q8.1C14, C4.9(C7×SD16), (C2×C28).282D4, C8.C4.2C14, (C2×C14).26SD16, C14.10(C4.Q8), (C7×M5(2)).3C2, C22.5(C7×SD16), (C2×C56).268C22, C4.6(C7×C4⋊C4), C2.3(C7×C4.Q8), (C2×C4).13(C7×D4), (C7×C4.Q8).6C2, (C2×C8).15(C2×C14), (C7×C8.C4).5C2, SmallGroup(448,169)

Series: Derived Chief Lower central Upper central

C1C8 — C7×C8.Q8
C1C2C4C2×C4C2×C8C2×C56C7×C4.Q8 — C7×C8.Q8
C1C2C4C8 — C7×C8.Q8
C1C14C2×C28C2×C56 — C7×C8.Q8

Generators and relations for C7×C8.Q8
 G = < a,b,c,d | a7=b8=1, c4=b2, d2=b-1c2, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd-1=b3, dcd-1=b4c3 >

2C2
8C4
2C14
4C8
4C2×C4
8C28
2M4(2)
2C4⋊C4
4C2×C28
4C56
2C7×M4(2)
2C7×C4⋊C4

Smallest permutation representation of C7×C8.Q8
On 112 points
Generators in S112
(1 39 31 58 73 87 106)(2 40 32 59 74 88 107)(3 41 17 60 75 89 108)(4 42 18 61 76 90 109)(5 43 19 62 77 91 110)(6 44 20 63 78 92 111)(7 45 21 64 79 93 112)(8 46 22 49 80 94 97)(9 47 23 50 65 95 98)(10 48 24 51 66 96 99)(11 33 25 52 67 81 100)(12 34 26 53 68 82 101)(13 35 27 54 69 83 102)(14 36 28 55 70 84 103)(15 37 29 56 71 85 104)(16 38 30 57 72 86 105)
(1 3 5 7 9 11 13 15)(2 12 6 16 10 4 14 8)(17 19 21 23 25 27 29 31)(18 28 22 32 26 20 30 24)(33 35 37 39 41 43 45 47)(34 44 38 48 42 36 46 40)(49 59 53 63 57 51 61 55)(50 52 54 56 58 60 62 64)(65 67 69 71 73 75 77 79)(66 76 70 80 74 68 78 72)(81 83 85 87 89 91 93 95)(82 92 86 96 90 84 94 88)(97 107 101 111 105 99 109 103)(98 100 102 104 106 108 110 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(2 4 10 12)(3 7)(5 13)(6 16 14 8)(11 15)(17 21)(18 24 26 32)(19 27)(20 30 28 22)(25 29)(33 37)(34 40 42 48)(35 43)(36 46 44 38)(41 45)(49 63 57 55)(51 53 59 61)(52 56)(54 62)(60 64)(66 68 74 76)(67 71)(69 77)(70 80 78 72)(75 79)(81 85)(82 88 90 96)(83 91)(84 94 92 86)(89 93)(97 111 105 103)(99 101 107 109)(100 104)(102 110)(108 112)

G:=sub<Sym(112)| (1,39,31,58,73,87,106)(2,40,32,59,74,88,107)(3,41,17,60,75,89,108)(4,42,18,61,76,90,109)(5,43,19,62,77,91,110)(6,44,20,63,78,92,111)(7,45,21,64,79,93,112)(8,46,22,49,80,94,97)(9,47,23,50,65,95,98)(10,48,24,51,66,96,99)(11,33,25,52,67,81,100)(12,34,26,53,68,82,101)(13,35,27,54,69,83,102)(14,36,28,55,70,84,103)(15,37,29,56,71,85,104)(16,38,30,57,72,86,105), (1,3,5,7,9,11,13,15)(2,12,6,16,10,4,14,8)(17,19,21,23,25,27,29,31)(18,28,22,32,26,20,30,24)(33,35,37,39,41,43,45,47)(34,44,38,48,42,36,46,40)(49,59,53,63,57,51,61,55)(50,52,54,56,58,60,62,64)(65,67,69,71,73,75,77,79)(66,76,70,80,74,68,78,72)(81,83,85,87,89,91,93,95)(82,92,86,96,90,84,94,88)(97,107,101,111,105,99,109,103)(98,100,102,104,106,108,110,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,4,10,12)(3,7)(5,13)(6,16,14,8)(11,15)(17,21)(18,24,26,32)(19,27)(20,30,28,22)(25,29)(33,37)(34,40,42,48)(35,43)(36,46,44,38)(41,45)(49,63,57,55)(51,53,59,61)(52,56)(54,62)(60,64)(66,68,74,76)(67,71)(69,77)(70,80,78,72)(75,79)(81,85)(82,88,90,96)(83,91)(84,94,92,86)(89,93)(97,111,105,103)(99,101,107,109)(100,104)(102,110)(108,112)>;

G:=Group( (1,39,31,58,73,87,106)(2,40,32,59,74,88,107)(3,41,17,60,75,89,108)(4,42,18,61,76,90,109)(5,43,19,62,77,91,110)(6,44,20,63,78,92,111)(7,45,21,64,79,93,112)(8,46,22,49,80,94,97)(9,47,23,50,65,95,98)(10,48,24,51,66,96,99)(11,33,25,52,67,81,100)(12,34,26,53,68,82,101)(13,35,27,54,69,83,102)(14,36,28,55,70,84,103)(15,37,29,56,71,85,104)(16,38,30,57,72,86,105), (1,3,5,7,9,11,13,15)(2,12,6,16,10,4,14,8)(17,19,21,23,25,27,29,31)(18,28,22,32,26,20,30,24)(33,35,37,39,41,43,45,47)(34,44,38,48,42,36,46,40)(49,59,53,63,57,51,61,55)(50,52,54,56,58,60,62,64)(65,67,69,71,73,75,77,79)(66,76,70,80,74,68,78,72)(81,83,85,87,89,91,93,95)(82,92,86,96,90,84,94,88)(97,107,101,111,105,99,109,103)(98,100,102,104,106,108,110,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,4,10,12)(3,7)(5,13)(6,16,14,8)(11,15)(17,21)(18,24,26,32)(19,27)(20,30,28,22)(25,29)(33,37)(34,40,42,48)(35,43)(36,46,44,38)(41,45)(49,63,57,55)(51,53,59,61)(52,56)(54,62)(60,64)(66,68,74,76)(67,71)(69,77)(70,80,78,72)(75,79)(81,85)(82,88,90,96)(83,91)(84,94,92,86)(89,93)(97,111,105,103)(99,101,107,109)(100,104)(102,110)(108,112) );

G=PermutationGroup([[(1,39,31,58,73,87,106),(2,40,32,59,74,88,107),(3,41,17,60,75,89,108),(4,42,18,61,76,90,109),(5,43,19,62,77,91,110),(6,44,20,63,78,92,111),(7,45,21,64,79,93,112),(8,46,22,49,80,94,97),(9,47,23,50,65,95,98),(10,48,24,51,66,96,99),(11,33,25,52,67,81,100),(12,34,26,53,68,82,101),(13,35,27,54,69,83,102),(14,36,28,55,70,84,103),(15,37,29,56,71,85,104),(16,38,30,57,72,86,105)], [(1,3,5,7,9,11,13,15),(2,12,6,16,10,4,14,8),(17,19,21,23,25,27,29,31),(18,28,22,32,26,20,30,24),(33,35,37,39,41,43,45,47),(34,44,38,48,42,36,46,40),(49,59,53,63,57,51,61,55),(50,52,54,56,58,60,62,64),(65,67,69,71,73,75,77,79),(66,76,70,80,74,68,78,72),(81,83,85,87,89,91,93,95),(82,92,86,96,90,84,94,88),(97,107,101,111,105,99,109,103),(98,100,102,104,106,108,110,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(2,4,10,12),(3,7),(5,13),(6,16,14,8),(11,15),(17,21),(18,24,26,32),(19,27),(20,30,28,22),(25,29),(33,37),(34,40,42,48),(35,43),(36,46,44,38),(41,45),(49,63,57,55),(51,53,59,61),(52,56),(54,62),(60,64),(66,68,74,76),(67,71),(69,77),(70,80,78,72),(75,79),(81,85),(82,88,90,96),(83,91),(84,94,92,86),(89,93),(97,111,105,103),(99,101,107,109),(100,104),(102,110),(108,112)]])

112 conjugacy classes

class 1 2A2B4A4B4C4D7A···7F8A8B8C8D8E14A···14F14G···14L16A16B16C16D28A···28L28M···28X56A···56L56M···56R56S···56AD112A···112X
order12244447···78888814···1414···141616161628···2828···2856···5656···5656···56112···112
size11222881···1224881···12···244442···28···82···24···48···84···4

112 irreducible representations

dim11111111112222222244
type++++-+
imageC1C2C2C2C4C7C14C14C14C28Q8D4SD16SD16C7×Q8C7×D4C7×SD16C7×SD16C8.Q8C7×C8.Q8
kernelC7×C8.Q8C7×C4.Q8C7×C8.C4C7×M5(2)C112C8.Q8C4.Q8C8.C4M5(2)C16C56C2×C28C28C2×C14C8C2×C4C4C22C7C1
# reps111146666241122661212212

Matrix representation of C7×C8.Q8 in GL4(𝔽113) generated by

109000
010900
001090
000109
,
1310000
131300
0010013
00100100
,
0010
0001
1310000
131300
,
1000
011200
0010013
001313
G:=sub<GL(4,GF(113))| [109,0,0,0,0,109,0,0,0,0,109,0,0,0,0,109],[13,13,0,0,100,13,0,0,0,0,100,100,0,0,13,100],[0,0,13,13,0,0,100,13,1,0,0,0,0,1,0,0],[1,0,0,0,0,112,0,0,0,0,100,13,0,0,13,13] >;

C7×C8.Q8 in GAP, Magma, Sage, TeX

C_7\times C_8.Q_8
% in TeX

G:=Group("C7xC8.Q8");
// GroupNames label

G:=SmallGroup(448,169);
// by ID

G=gap.SmallGroup(448,169);
# by ID

G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,204,3923,136,4911,14117,124]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^8=1,c^4=b^2,d^2=b^-1*c^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d^-1=b^3,d*c*d^-1=b^4*c^3>;
// generators/relations

Export

Subgroup lattice of C7×C8.Q8 in TeX

׿
×
𝔽