# Extensions 1→N→G→Q→1 with N=C4⋊1D4 and Q=D7

Direct product G=N×Q with N=C41D4 and Q=D7
dρLabelID
D7×C41D4112D7xC4:1D4448,1167

Semidirect products G=N:Q with N=C41D4 and Q=D7
extensionφ:Q→Out NdρLabelID
C41D41D7 = C282D8φ: D7/C7C2 ⊆ Out C41D4224C4:1D4:1D7448,606
C41D42D7 = C28⋊D8φ: D7/C7C2 ⊆ Out C41D4224C4:1D4:2D7448,607
C41D43D7 = C42.74D14φ: D7/C7C2 ⊆ Out C41D4224C4:1D4:3D7448,608
C41D44D7 = D285D4φ: D7/C7C2 ⊆ Out C41D4564C4:1D4:4D7448,611
C41D45D7 = C4226D14φ: D7/C7C2 ⊆ Out C41D4112C4:1D4:5D7448,1168
C41D46D7 = D2811D4φ: D7/C7C2 ⊆ Out C41D4112C4:1D4:6D7448,1170
C41D47D7 = Dic1411D4φ: D7/C7C2 ⊆ Out C41D4224C4:1D4:7D7448,1171
C41D48D7 = C42.168D14φ: D7/C7C2 ⊆ Out C41D4224C4:1D4:8D7448,1172
C41D49D7 = C4228D14φ: D7/C7C2 ⊆ Out C41D4112C4:1D4:9D7448,1173
C41D410D7 = C42.238D14φ: trivial image224C4:1D4:10D7448,1169

Non-split extensions G=N.Q with N=C41D4 and Q=D7
extensionφ:Q→Out NdρLabelID
C41D4.1D7 = C28.9D8φ: D7/C7C2 ⊆ Out C41D4224C4:1D4.1D7448,101
C41D4.2D7 = C423Dic7φ: D7/C7C2 ⊆ Out C41D4564C4:1D4.2D7448,102
C41D4.3D7 = C28.16D8φ: D7/C7C2 ⊆ Out C41D4224C4:1D4.3D7448,604
C41D4.4D7 = C42.72D14φ: D7/C7C2 ⊆ Out C41D4224C4:1D4.4D7448,605
C41D4.5D7 = Dic149D4φ: D7/C7C2 ⊆ Out C41D4224C4:1D4.5D7448,609
C41D4.6D7 = C284SD16φ: D7/C7C2 ⊆ Out C41D4224C4:1D4.6D7448,610
C41D4.7D7 = C42.166D14φ: D7/C7C2 ⊆ Out C41D4224C4:1D4.7D7448,1166

׿
×
𝔽