Copied to
clipboard

G = D2811D4order 448 = 26·7

4th semidirect product of D28 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2811D4, C4227D14, C14.772+ 1+4, C74D42, C42(D4×D7), C283(C2×D4), D148(C2×D4), C41D46D7, (C4×D28)⋊49C2, (C2×D4)⋊26D14, C282D436C2, (C4×C28)⋊27C22, C23⋊D1427C2, D14⋊C470C22, (D4×C14)⋊33C22, C4⋊Dic774C22, C14.95(C22×D4), (C2×C28).509C23, (C2×C14).261C24, (C23×D7)⋊13C22, C2.81(D46D14), C23.D737C22, C23.67(C22×D7), (C2×D28).269C22, (C22×C14).75C23, C22.282(C23×D7), (C2×Dic7).136C23, (C22×D7).229C23, (C2×D4×D7)⋊20C2, C2.68(C2×D4×D7), (C7×C41D4)⋊8C2, (C2×C4×D7)⋊29C22, (C2×C7⋊D4)⋊27C22, (C2×C4).214(C22×D7), SmallGroup(448,1170)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D2811D4
C1C7C14C2×C14C22×D7C23×D7C2×D4×D7 — D2811D4
C7C2×C14 — D2811D4
C1C22C41D4

Generators and relations for D2811D4
 G = < a,b,c,d | a28=b2=c4=d2=1, bab=a-1, ac=ca, dad=a15, cbc-1=a14b, bd=db, dcd=c-1 >

Subgroups: 2572 in 428 conjugacy classes, 115 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C24, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C4×D4, C22≀C2, C4⋊D4, C41D4, C22×D4, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, D42, C4⋊Dic7, D14⋊C4, C23.D7, C4×C28, C2×C4×D7, C2×D28, D4×D7, C2×C7⋊D4, D4×C14, C23×D7, C4×D28, C23⋊D14, C282D4, C7×C41D4, C2×D4×D7, D2811D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, 2+ 1+4, C22×D7, D42, D4×D7, C23×D7, C2×D4×D7, D46D14, D2811D4

Smallest permutation representation of D2811D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 14)(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(15 28)(16 27)(17 26)(18 25)(19 24)(20 23)(21 22)(29 56)(30 55)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)(57 60)(58 59)(61 84)(62 83)(63 82)(64 81)(65 80)(66 79)(67 78)(68 77)(69 76)(70 75)(71 74)(72 73)(85 94)(86 93)(87 92)(88 91)(89 90)(95 112)(96 111)(97 110)(98 109)(99 108)(100 107)(101 106)(102 105)(103 104)
(1 90 80 29)(2 91 81 30)(3 92 82 31)(4 93 83 32)(5 94 84 33)(6 95 57 34)(7 96 58 35)(8 97 59 36)(9 98 60 37)(10 99 61 38)(11 100 62 39)(12 101 63 40)(13 102 64 41)(14 103 65 42)(15 104 66 43)(16 105 67 44)(17 106 68 45)(18 107 69 46)(19 108 70 47)(20 109 71 48)(21 110 72 49)(22 111 73 50)(23 112 74 51)(24 85 75 52)(25 86 76 53)(26 87 77 54)(27 88 78 55)(28 89 79 56)
(1 22)(2 9)(3 24)(4 11)(5 26)(6 13)(7 28)(8 15)(10 17)(12 19)(14 21)(16 23)(18 25)(20 27)(29 111)(30 98)(31 85)(32 100)(33 87)(34 102)(35 89)(36 104)(37 91)(38 106)(39 93)(40 108)(41 95)(42 110)(43 97)(44 112)(45 99)(46 86)(47 101)(48 88)(49 103)(50 90)(51 105)(52 92)(53 107)(54 94)(55 109)(56 96)(57 64)(58 79)(59 66)(60 81)(61 68)(62 83)(63 70)(65 72)(67 74)(69 76)(71 78)(73 80)(75 82)(77 84)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(57,60)(58,59)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(85,94)(86,93)(87,92)(88,91)(89,90)(95,112)(96,111)(97,110)(98,109)(99,108)(100,107)(101,106)(102,105)(103,104), (1,90,80,29)(2,91,81,30)(3,92,82,31)(4,93,83,32)(5,94,84,33)(6,95,57,34)(7,96,58,35)(8,97,59,36)(9,98,60,37)(10,99,61,38)(11,100,62,39)(12,101,63,40)(13,102,64,41)(14,103,65,42)(15,104,66,43)(16,105,67,44)(17,106,68,45)(18,107,69,46)(19,108,70,47)(20,109,71,48)(21,110,72,49)(22,111,73,50)(23,112,74,51)(24,85,75,52)(25,86,76,53)(26,87,77,54)(27,88,78,55)(28,89,79,56), (1,22)(2,9)(3,24)(4,11)(5,26)(6,13)(7,28)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(29,111)(30,98)(31,85)(32,100)(33,87)(34,102)(35,89)(36,104)(37,91)(38,106)(39,93)(40,108)(41,95)(42,110)(43,97)(44,112)(45,99)(46,86)(47,101)(48,88)(49,103)(50,90)(51,105)(52,92)(53,107)(54,94)(55,109)(56,96)(57,64)(58,79)(59,66)(60,81)(61,68)(62,83)(63,70)(65,72)(67,74)(69,76)(71,78)(73,80)(75,82)(77,84)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(57,60)(58,59)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(85,94)(86,93)(87,92)(88,91)(89,90)(95,112)(96,111)(97,110)(98,109)(99,108)(100,107)(101,106)(102,105)(103,104), (1,90,80,29)(2,91,81,30)(3,92,82,31)(4,93,83,32)(5,94,84,33)(6,95,57,34)(7,96,58,35)(8,97,59,36)(9,98,60,37)(10,99,61,38)(11,100,62,39)(12,101,63,40)(13,102,64,41)(14,103,65,42)(15,104,66,43)(16,105,67,44)(17,106,68,45)(18,107,69,46)(19,108,70,47)(20,109,71,48)(21,110,72,49)(22,111,73,50)(23,112,74,51)(24,85,75,52)(25,86,76,53)(26,87,77,54)(27,88,78,55)(28,89,79,56), (1,22)(2,9)(3,24)(4,11)(5,26)(6,13)(7,28)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(29,111)(30,98)(31,85)(32,100)(33,87)(34,102)(35,89)(36,104)(37,91)(38,106)(39,93)(40,108)(41,95)(42,110)(43,97)(44,112)(45,99)(46,86)(47,101)(48,88)(49,103)(50,90)(51,105)(52,92)(53,107)(54,94)(55,109)(56,96)(57,64)(58,79)(59,66)(60,81)(61,68)(62,83)(63,70)(65,72)(67,74)(69,76)(71,78)(73,80)(75,82)(77,84) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,28),(16,27),(17,26),(18,25),(19,24),(20,23),(21,22),(29,56),(30,55),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43),(57,60),(58,59),(61,84),(62,83),(63,82),(64,81),(65,80),(66,79),(67,78),(68,77),(69,76),(70,75),(71,74),(72,73),(85,94),(86,93),(87,92),(88,91),(89,90),(95,112),(96,111),(97,110),(98,109),(99,108),(100,107),(101,106),(102,105),(103,104)], [(1,90,80,29),(2,91,81,30),(3,92,82,31),(4,93,83,32),(5,94,84,33),(6,95,57,34),(7,96,58,35),(8,97,59,36),(9,98,60,37),(10,99,61,38),(11,100,62,39),(12,101,63,40),(13,102,64,41),(14,103,65,42),(15,104,66,43),(16,105,67,44),(17,106,68,45),(18,107,69,46),(19,108,70,47),(20,109,71,48),(21,110,72,49),(22,111,73,50),(23,112,74,51),(24,85,75,52),(25,86,76,53),(26,87,77,54),(27,88,78,55),(28,89,79,56)], [(1,22),(2,9),(3,24),(4,11),(5,26),(6,13),(7,28),(8,15),(10,17),(12,19),(14,21),(16,23),(18,25),(20,27),(29,111),(30,98),(31,85),(32,100),(33,87),(34,102),(35,89),(36,104),(37,91),(38,106),(39,93),(40,108),(41,95),(42,110),(43,97),(44,112),(45,99),(46,86),(47,101),(48,88),(49,103),(50,90),(51,105),(52,92),(53,107),(54,94),(55,109),(56,96),(57,64),(58,79),(59,66),(60,81),(61,68),(62,83),(63,70),(65,72),(67,74),(69,76),(71,78),(73,80),(75,82),(77,84)]])

67 conjugacy classes

class 1 2A2B2C2D2E2F2G2H···2O4A4B4C4D4E4F4G4H4I7A7B7C14A···14I14J···14U28A···28R
order122222222···244444444477714···1414···1428···28
size1111444414···1422224282828282222···28···84···4

67 irreducible representations

dim1111112222444
type++++++++++++
imageC1C2C2C2C2C2D4D7D14D142+ 1+4D4×D7D46D14
kernelD2811D4C4×D28C23⋊D14C282D4C7×C41D4C2×D4×D7D28C41D4C42C2×D4C14C4C2
# reps124414833181126

Matrix representation of D2811D4 in GL6(𝔽29)

8260000
3280000
001000
000100
0000028
000010
,
8260000
21210000
001000
000100
000001
000010
,
2800000
0280000
000100
0028000
000001
0000280
,
100000
010000
001000
0002800
000001
000010

G:=sub<GL(6,GF(29))| [8,3,0,0,0,0,26,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,28,0],[8,21,0,0,0,0,26,21,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,0,28,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

D2811D4 in GAP, Magma, Sage, TeX

D_{28}\rtimes_{11}D_4
% in TeX

G:=Group("D28:11D4");
// GroupNames label

G:=SmallGroup(448,1170);
// by ID

G=gap.SmallGroup(448,1170);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,1571,570,297,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^15,c*b*c^-1=a^14*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽