metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D28⋊11D4, C42⋊27D14, C14.772+ 1+4, C7⋊4D42, C4⋊2(D4×D7), C28⋊3(C2×D4), D14⋊8(C2×D4), C4⋊1D4⋊6D7, (C4×D28)⋊49C2, (C2×D4)⋊26D14, C28⋊2D4⋊36C2, (C4×C28)⋊27C22, C23⋊D14⋊27C2, D14⋊C4⋊70C22, (D4×C14)⋊33C22, C4⋊Dic7⋊74C22, C14.95(C22×D4), (C2×C28).509C23, (C2×C14).261C24, (C23×D7)⋊13C22, C2.81(D4⋊6D14), C23.D7⋊37C22, C23.67(C22×D7), (C2×D28).269C22, (C22×C14).75C23, C22.282(C23×D7), (C2×Dic7).136C23, (C22×D7).229C23, (C2×D4×D7)⋊20C2, C2.68(C2×D4×D7), (C7×C4⋊1D4)⋊8C2, (C2×C4×D7)⋊29C22, (C2×C7⋊D4)⋊27C22, (C2×C4).214(C22×D7), SmallGroup(448,1170)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D28⋊11D4
G = < a,b,c,d | a28=b2=c4=d2=1, bab=a-1, ac=ca, dad=a15, cbc-1=a14b, bd=db, dcd=c-1 >
Subgroups: 2572 in 428 conjugacy classes, 115 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C24, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C4×D4, C22≀C2, C4⋊D4, C4⋊1D4, C22×D4, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, D42, C4⋊Dic7, D14⋊C4, C23.D7, C4×C28, C2×C4×D7, C2×D28, D4×D7, C2×C7⋊D4, D4×C14, C23×D7, C4×D28, C23⋊D14, C28⋊2D4, C7×C4⋊1D4, C2×D4×D7, D28⋊11D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, 2+ 1+4, C22×D7, D42, D4×D7, C23×D7, C2×D4×D7, D4⋊6D14, D28⋊11D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 14)(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(15 28)(16 27)(17 26)(18 25)(19 24)(20 23)(21 22)(29 56)(30 55)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)(57 60)(58 59)(61 84)(62 83)(63 82)(64 81)(65 80)(66 79)(67 78)(68 77)(69 76)(70 75)(71 74)(72 73)(85 94)(86 93)(87 92)(88 91)(89 90)(95 112)(96 111)(97 110)(98 109)(99 108)(100 107)(101 106)(102 105)(103 104)
(1 90 80 29)(2 91 81 30)(3 92 82 31)(4 93 83 32)(5 94 84 33)(6 95 57 34)(7 96 58 35)(8 97 59 36)(9 98 60 37)(10 99 61 38)(11 100 62 39)(12 101 63 40)(13 102 64 41)(14 103 65 42)(15 104 66 43)(16 105 67 44)(17 106 68 45)(18 107 69 46)(19 108 70 47)(20 109 71 48)(21 110 72 49)(22 111 73 50)(23 112 74 51)(24 85 75 52)(25 86 76 53)(26 87 77 54)(27 88 78 55)(28 89 79 56)
(1 22)(2 9)(3 24)(4 11)(5 26)(6 13)(7 28)(8 15)(10 17)(12 19)(14 21)(16 23)(18 25)(20 27)(29 111)(30 98)(31 85)(32 100)(33 87)(34 102)(35 89)(36 104)(37 91)(38 106)(39 93)(40 108)(41 95)(42 110)(43 97)(44 112)(45 99)(46 86)(47 101)(48 88)(49 103)(50 90)(51 105)(52 92)(53 107)(54 94)(55 109)(56 96)(57 64)(58 79)(59 66)(60 81)(61 68)(62 83)(63 70)(65 72)(67 74)(69 76)(71 78)(73 80)(75 82)(77 84)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(57,60)(58,59)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(85,94)(86,93)(87,92)(88,91)(89,90)(95,112)(96,111)(97,110)(98,109)(99,108)(100,107)(101,106)(102,105)(103,104), (1,90,80,29)(2,91,81,30)(3,92,82,31)(4,93,83,32)(5,94,84,33)(6,95,57,34)(7,96,58,35)(8,97,59,36)(9,98,60,37)(10,99,61,38)(11,100,62,39)(12,101,63,40)(13,102,64,41)(14,103,65,42)(15,104,66,43)(16,105,67,44)(17,106,68,45)(18,107,69,46)(19,108,70,47)(20,109,71,48)(21,110,72,49)(22,111,73,50)(23,112,74,51)(24,85,75,52)(25,86,76,53)(26,87,77,54)(27,88,78,55)(28,89,79,56), (1,22)(2,9)(3,24)(4,11)(5,26)(6,13)(7,28)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(29,111)(30,98)(31,85)(32,100)(33,87)(34,102)(35,89)(36,104)(37,91)(38,106)(39,93)(40,108)(41,95)(42,110)(43,97)(44,112)(45,99)(46,86)(47,101)(48,88)(49,103)(50,90)(51,105)(52,92)(53,107)(54,94)(55,109)(56,96)(57,64)(58,79)(59,66)(60,81)(61,68)(62,83)(63,70)(65,72)(67,74)(69,76)(71,78)(73,80)(75,82)(77,84)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(57,60)(58,59)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(71,74)(72,73)(85,94)(86,93)(87,92)(88,91)(89,90)(95,112)(96,111)(97,110)(98,109)(99,108)(100,107)(101,106)(102,105)(103,104), (1,90,80,29)(2,91,81,30)(3,92,82,31)(4,93,83,32)(5,94,84,33)(6,95,57,34)(7,96,58,35)(8,97,59,36)(9,98,60,37)(10,99,61,38)(11,100,62,39)(12,101,63,40)(13,102,64,41)(14,103,65,42)(15,104,66,43)(16,105,67,44)(17,106,68,45)(18,107,69,46)(19,108,70,47)(20,109,71,48)(21,110,72,49)(22,111,73,50)(23,112,74,51)(24,85,75,52)(25,86,76,53)(26,87,77,54)(27,88,78,55)(28,89,79,56), (1,22)(2,9)(3,24)(4,11)(5,26)(6,13)(7,28)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(29,111)(30,98)(31,85)(32,100)(33,87)(34,102)(35,89)(36,104)(37,91)(38,106)(39,93)(40,108)(41,95)(42,110)(43,97)(44,112)(45,99)(46,86)(47,101)(48,88)(49,103)(50,90)(51,105)(52,92)(53,107)(54,94)(55,109)(56,96)(57,64)(58,79)(59,66)(60,81)(61,68)(62,83)(63,70)(65,72)(67,74)(69,76)(71,78)(73,80)(75,82)(77,84) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,28),(16,27),(17,26),(18,25),(19,24),(20,23),(21,22),(29,56),(30,55),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43),(57,60),(58,59),(61,84),(62,83),(63,82),(64,81),(65,80),(66,79),(67,78),(68,77),(69,76),(70,75),(71,74),(72,73),(85,94),(86,93),(87,92),(88,91),(89,90),(95,112),(96,111),(97,110),(98,109),(99,108),(100,107),(101,106),(102,105),(103,104)], [(1,90,80,29),(2,91,81,30),(3,92,82,31),(4,93,83,32),(5,94,84,33),(6,95,57,34),(7,96,58,35),(8,97,59,36),(9,98,60,37),(10,99,61,38),(11,100,62,39),(12,101,63,40),(13,102,64,41),(14,103,65,42),(15,104,66,43),(16,105,67,44),(17,106,68,45),(18,107,69,46),(19,108,70,47),(20,109,71,48),(21,110,72,49),(22,111,73,50),(23,112,74,51),(24,85,75,52),(25,86,76,53),(26,87,77,54),(27,88,78,55),(28,89,79,56)], [(1,22),(2,9),(3,24),(4,11),(5,26),(6,13),(7,28),(8,15),(10,17),(12,19),(14,21),(16,23),(18,25),(20,27),(29,111),(30,98),(31,85),(32,100),(33,87),(34,102),(35,89),(36,104),(37,91),(38,106),(39,93),(40,108),(41,95),(42,110),(43,97),(44,112),(45,99),(46,86),(47,101),(48,88),(49,103),(50,90),(51,105),(52,92),(53,107),(54,94),(55,109),(56,96),(57,64),(58,79),(59,66),(60,81),(61,68),(62,83),(63,70),(65,72),(67,74),(69,76),(71,78),(73,80),(75,82),(77,84)]])
67 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | ··· | 2O | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 7A | 7B | 7C | 14A | ··· | 14I | 14J | ··· | 14U | 28A | ··· | 28R |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 14 | ··· | 14 | 2 | 2 | 2 | 2 | 4 | 28 | 28 | 28 | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 8 | ··· | 8 | 4 | ··· | 4 |
67 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D7 | D14 | D14 | 2+ 1+4 | D4×D7 | D4⋊6D14 |
kernel | D28⋊11D4 | C4×D28 | C23⋊D14 | C28⋊2D4 | C7×C4⋊1D4 | C2×D4×D7 | D28 | C4⋊1D4 | C42 | C2×D4 | C14 | C4 | C2 |
# reps | 1 | 2 | 4 | 4 | 1 | 4 | 8 | 3 | 3 | 18 | 1 | 12 | 6 |
Matrix representation of D28⋊11D4 ►in GL6(𝔽29)
8 | 26 | 0 | 0 | 0 | 0 |
3 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
0 | 0 | 0 | 0 | 1 | 0 |
8 | 26 | 0 | 0 | 0 | 0 |
21 | 21 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 28 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(29))| [8,3,0,0,0,0,26,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,28,0],[8,21,0,0,0,0,26,21,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,0,28,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
D28⋊11D4 in GAP, Magma, Sage, TeX
D_{28}\rtimes_{11}D_4
% in TeX
G:=Group("D28:11D4");
// GroupNames label
G:=SmallGroup(448,1170);
// by ID
G=gap.SmallGroup(448,1170);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,1571,570,297,136,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^15,c*b*c^-1=a^14*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations