p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C4⋊1D4, C42⋊6C2, C23.5C22, C22.17C23, (C2×D4)⋊3C2, C2.9(C2×D4), (C2×C4).23C22, SmallGroup(32,34)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4⋊1D4
G = < a,b,c | a4=b4=c2=1, ab=ba, cac=a-1, cbc=b-1 >
Subgroups: 90 in 54 conjugacy classes, 26 normal (4 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, D4, C23, C42, C2×D4, C4⋊1D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4⋊1D4
Character table of C4⋊1D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | orthogonal lifted from D4 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 6 14 11)(2 7 15 12)(3 8 16 9)(4 5 13 10)
(1 5)(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(12 16)
G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,6,14,11)(2,7,15,12)(3,8,16,9)(4,5,13,10), (1,5)(2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(12,16)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,6,14,11)(2,7,15,12)(3,8,16,9)(4,5,13,10), (1,5)(2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(12,16) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,6,14,11),(2,7,15,12),(3,8,16,9),(4,5,13,10)], [(1,5),(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(12,16)]])
G:=TransitiveGroup(16,51);
C4⋊1D4 is a maximal subgroup of
C4.D8 C42⋊C4 D4⋊4D4 C4⋊D8 C4⋊SD16 C4.4D8 C42.29C22 C22.26C24 C22.29C24 C22.34C24 D42 Q8⋊6D4 C22.53C24 C22.54C24 C23.A4 C4⋊S3≀C2
C4p⋊D4: C8⋊5D4 C8⋊4D4 C8⋊3D4 C4⋊D12 C12⋊3D4 C20⋊4D4 C20⋊D4 C28⋊4D4 ...
C4⋊1D4 is a maximal quotient of
C42⋊9C4 C24.3C22 C23⋊2D4 C23.4Q8 C4⋊Q16 C8.12D4 C8.2D4 C4⋊S3≀C2
C4p⋊D4: C8⋊5D4 C8⋊4D4 C8⋊3D4 C4⋊D12 C12⋊3D4 C20⋊4D4 C20⋊D4 C28⋊4D4 ...
Matrix representation of C4⋊1D4 ►in GL4(ℤ) generated by
0 | 1 | 0 | 0 |
-1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | -1 | 0 |
1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,Integers())| [0,-1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,-1,0,0,1,0],[1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,1] >;
C4⋊1D4 in GAP, Magma, Sage, TeX
C_4\rtimes_1D_4
% in TeX
G:=Group("C4:1D4");
// GroupNames label
G:=SmallGroup(32,34);
// by ID
G=gap.SmallGroup(32,34);
# by ID
G:=PCGroup([5,-2,2,2,-2,2,101,46,302,72]);
// Polycyclic
G:=Group<a,b,c|a^4=b^4=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export