Extensions 1→N→G→Q→1 with N=C2xQ8:D7 and Q=C2

Direct product G=NxQ with N=C2xQ8:D7 and Q=C2
dρLabelID
C22xQ8:D7224C2^2xQ8:D7448,1260

Semidirect products G=N:Q with N=C2xQ8:D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ8:D7):1C2 = D28.6D4φ: C2/C1C2 ⊆ Out C2xQ8:D71128+(C2xQ8:D7):1C2448,288
(C2xQ8:D7):2C2 = Q8:2D28φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):2C2448,340
(C2xQ8:D7):3C2 = D14:2SD16φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):3C2448,341
(C2xQ8:D7):4C2 = D28:4D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):4C2448,345
(C2xQ8:D7):5C2 = C7:(C8:D4)φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):5C2448,346
(C2xQ8:D7):6C2 = D28.12D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):6C2448,353
(C2xQ8:D7):7C2 = Q8:D28φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):7C2448,561
(C2xQ8:D7):8C2 = D28.36D4φ: C2/C1C2 ⊆ Out C2xQ8:D7112(C2xQ8:D7):8C2448,580
(C2xQ8:D7):9C2 = D28.37D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):9C2448,581
(C2xQ8:D7):10C2 = C7:C8:24D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):10C2448,582
(C2xQ8:D7):11C2 = C7:C8:6D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):11C2448,583
(C2xQ8:D7):12C2 = D28.23D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):12C2448,591
(C2xQ8:D7):13C2 = C42.64D14φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):13C2448,592
(C2xQ8:D7):14C2 = C42.214D14φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):14C2448,593
(C2xQ8:D7):15C2 = C28:6SD16φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):15C2448,619
(C2xQ8:D7):16C2 = Dic7:5SD16φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):16C2448,697
(C2xQ8:D7):17C2 = D14:6SD16φ: C2/C1C2 ⊆ Out C2xQ8:D7112(C2xQ8:D7):17C2448,703
(C2xQ8:D7):18C2 = C56:15D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):18C2448,709
(C2xQ8:D7):19C2 = C56:9D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):19C2448,710
(C2xQ8:D7):20C2 = D28.17D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):20C2448,721
(C2xQ8:D7):21C2 = C56.28D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):21C2448,725
(C2xQ8:D7):22C2 = M4(2).15D14φ: C2/C1C2 ⊆ Out C2xQ8:D71128+(C2xQ8:D7):22C2448,737
(C2xQ8:D7):23C2 = (C7xQ8):13D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):23C2448,761
(C2xQ8:D7):24C2 = (C7xD4):14D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):24C2448,772
(C2xQ8:D7):25C2 = C2xD7xSD16φ: C2/C1C2 ⊆ Out C2xQ8:D7112(C2xQ8:D7):25C2448,1211
(C2xQ8:D7):26C2 = C2xD56:C2φ: C2/C1C2 ⊆ Out C2xQ8:D7112(C2xQ8:D7):26C2448,1212
(C2xQ8:D7):27C2 = C2xQ16:D7φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):27C2448,1217
(C2xQ8:D7):28C2 = C2xQ8.D14φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):28C2448,1218
(C2xQ8:D7):29C2 = C56.C23φ: C2/C1C2 ⊆ Out C2xQ8:D71128+(C2xQ8:D7):29C2448,1231
(C2xQ8:D7):30C2 = C2xC28.C23φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7):30C2448,1261
(C2xQ8:D7):31C2 = C2xD4:D14φ: C2/C1C2 ⊆ Out C2xQ8:D7112(C2xQ8:D7):31C2448,1273
(C2xQ8:D7):32C2 = D28.34C23φ: C2/C1C2 ⊆ Out C2xQ8:D71128+(C2xQ8:D7):32C2448,1290
(C2xQ8:D7):33C2 = C2xD4.8D14φ: trivial image224(C2xQ8:D7):33C2448,1274

Non-split extensions G=N.Q with N=C2xQ8:D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xQ8:D7).1C2 = Dic7:7SD16φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7).1C2448,322
(C2xQ8:D7).2C2 = Q8:D7:C4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7).2C2448,351
(C2xQ8:D7).3C2 = Dic7:SD16φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7).3C2448,352
(C2xQ8:D7).4C2 = C42.56D14φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7).4C2448,560
(C2xQ8:D7).5C2 = Q8.1D28φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7).5C2448,562
(C2xQ8:D7).6C2 = C28:5SD16φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7).6C2448,617
(C2xQ8:D7).7C2 = C42.80D14φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7).7C2448,620
(C2xQ8:D7).8C2 = (C2xQ16):D7φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7).8C2448,719
(C2xQ8:D7).9C2 = C56.37D4φ: C2/C1C2 ⊆ Out C2xQ8:D7224(C2xQ8:D7).9C2448,724
(C2xQ8:D7).10C2 = C4xQ8:D7φ: trivial image224(C2xQ8:D7).10C2448,559

׿
x
:
Z
F
o
wr
Q
<