metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D28⋊4D4, Q8⋊3D28, (C7×Q8)⋊2D4, D14⋊C8⋊8C2, (C2×D56)⋊6C2, C4.95(D4×D7), C4.8(C2×D28), C4⋊D28⋊5C2, C7⋊3(D4⋊D4), C4⋊C4.27D14, Q8⋊C4⋊6D7, (C2×C8).18D14, C28.124(C2×D4), C14.D8⋊12C2, C14.26C22≀C2, C14.70(C4○D8), (C2×C56).18C22, (C2×Q8).110D14, (C22×D7).18D4, C22.201(D4×D7), C2.9(Q8.D14), C2.17(D56⋊C2), C14.63(C8⋊C22), (C2×C28).251C23, (C2×Dic7).155D4, (C2×D28).65C22, (Q8×C14).34C22, C2.29(C22⋊D28), (C2×Q8⋊D7)⋊4C2, (C7×Q8⋊C4)⋊6C2, (C2×Q8⋊2D7)⋊1C2, (C2×C7⋊C8).42C22, (C2×C4×D7).24C22, (C2×C14).264(C2×D4), (C7×C4⋊C4).52C22, (C2×C4).358(C22×D7), SmallGroup(448,345)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C2×C4 — Q8⋊C4 |
Generators and relations for D28⋊4D4
G = < a,b,c,d | a28=b2=c4=d2=1, bab=dad=a-1, cac-1=a15, cbc-1=a21b, dbd=a19b, dcd=c-1 >
Subgroups: 1108 in 162 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D7, C14, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×Q8, C4○D4, Dic7, C28, C28, D14, C2×C14, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊D4, C2×D8, C2×SD16, C2×C4○D4, C7⋊C8, C56, C4×D7, D28, D28, C2×Dic7, C2×C28, C2×C28, C7×Q8, C7×Q8, C22×D7, C22×D7, D4⋊D4, D56, C2×C7⋊C8, D14⋊C4, Q8⋊D7, C7×C4⋊C4, C2×C56, C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, Q8⋊2D7, Q8×C14, C14.D8, D14⋊C8, C7×Q8⋊C4, C4⋊D28, C2×D56, C2×Q8⋊D7, C2×Q8⋊2D7, D28⋊4D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, C4○D8, C8⋊C22, D28, C22×D7, D4⋊D4, C2×D28, D4×D7, C22⋊D28, D56⋊C2, Q8.D14, D28⋊4D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 193)(2 192)(3 191)(4 190)(5 189)(6 188)(7 187)(8 186)(9 185)(10 184)(11 183)(12 182)(13 181)(14 180)(15 179)(16 178)(17 177)(18 176)(19 175)(20 174)(21 173)(22 172)(23 171)(24 170)(25 169)(26 196)(27 195)(28 194)(29 156)(30 155)(31 154)(32 153)(33 152)(34 151)(35 150)(36 149)(37 148)(38 147)(39 146)(40 145)(41 144)(42 143)(43 142)(44 141)(45 168)(46 167)(47 166)(48 165)(49 164)(50 163)(51 162)(52 161)(53 160)(54 159)(55 158)(56 157)(57 203)(58 202)(59 201)(60 200)(61 199)(62 198)(63 197)(64 224)(65 223)(66 222)(67 221)(68 220)(69 219)(70 218)(71 217)(72 216)(73 215)(74 214)(75 213)(76 212)(77 211)(78 210)(79 209)(80 208)(81 207)(82 206)(83 205)(84 204)(85 121)(86 120)(87 119)(88 118)(89 117)(90 116)(91 115)(92 114)(93 113)(94 140)(95 139)(96 138)(97 137)(98 136)(99 135)(100 134)(101 133)(102 132)(103 131)(104 130)(105 129)(106 128)(107 127)(108 126)(109 125)(110 124)(111 123)(112 122)
(1 45 74 108)(2 32 75 95)(3 47 76 110)(4 34 77 97)(5 49 78 112)(6 36 79 99)(7 51 80 86)(8 38 81 101)(9 53 82 88)(10 40 83 103)(11 55 84 90)(12 42 57 105)(13 29 58 92)(14 44 59 107)(15 31 60 94)(16 46 61 109)(17 33 62 96)(18 48 63 111)(19 35 64 98)(20 50 65 85)(21 37 66 100)(22 52 67 87)(23 39 68 102)(24 54 69 89)(25 41 70 104)(26 56 71 91)(27 43 72 106)(28 30 73 93)(113 173 155 222)(114 188 156 209)(115 175 157 224)(116 190 158 211)(117 177 159 198)(118 192 160 213)(119 179 161 200)(120 194 162 215)(121 181 163 202)(122 196 164 217)(123 183 165 204)(124 170 166 219)(125 185 167 206)(126 172 168 221)(127 187 141 208)(128 174 142 223)(129 189 143 210)(130 176 144 197)(131 191 145 212)(132 178 146 199)(133 193 147 214)(134 180 148 201)(135 195 149 216)(136 182 150 203)(137 169 151 218)(138 184 152 205)(139 171 153 220)(140 186 154 207)
(1 45)(2 44)(3 43)(4 42)(5 41)(6 40)(7 39)(8 38)(9 37)(10 36)(11 35)(12 34)(13 33)(14 32)(15 31)(16 30)(17 29)(18 56)(19 55)(20 54)(21 53)(22 52)(23 51)(24 50)(25 49)(26 48)(27 47)(28 46)(57 97)(58 96)(59 95)(60 94)(61 93)(62 92)(63 91)(64 90)(65 89)(66 88)(67 87)(68 86)(69 85)(70 112)(71 111)(72 110)(73 109)(74 108)(75 107)(76 106)(77 105)(78 104)(79 103)(80 102)(81 101)(82 100)(83 99)(84 98)(113 208)(114 207)(115 206)(116 205)(117 204)(118 203)(119 202)(120 201)(121 200)(122 199)(123 198)(124 197)(125 224)(126 223)(127 222)(128 221)(129 220)(130 219)(131 218)(132 217)(133 216)(134 215)(135 214)(136 213)(137 212)(138 211)(139 210)(140 209)(141 173)(142 172)(143 171)(144 170)(145 169)(146 196)(147 195)(148 194)(149 193)(150 192)(151 191)(152 190)(153 189)(154 188)(155 187)(156 186)(157 185)(158 184)(159 183)(160 182)(161 181)(162 180)(163 179)(164 178)(165 177)(166 176)(167 175)(168 174)
G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,193)(2,192)(3,191)(4,190)(5,189)(6,188)(7,187)(8,186)(9,185)(10,184)(11,183)(12,182)(13,181)(14,180)(15,179)(16,178)(17,177)(18,176)(19,175)(20,174)(21,173)(22,172)(23,171)(24,170)(25,169)(26,196)(27,195)(28,194)(29,156)(30,155)(31,154)(32,153)(33,152)(34,151)(35,150)(36,149)(37,148)(38,147)(39,146)(40,145)(41,144)(42,143)(43,142)(44,141)(45,168)(46,167)(47,166)(48,165)(49,164)(50,163)(51,162)(52,161)(53,160)(54,159)(55,158)(56,157)(57,203)(58,202)(59,201)(60,200)(61,199)(62,198)(63,197)(64,224)(65,223)(66,222)(67,221)(68,220)(69,219)(70,218)(71,217)(72,216)(73,215)(74,214)(75,213)(76,212)(77,211)(78,210)(79,209)(80,208)(81,207)(82,206)(83,205)(84,204)(85,121)(86,120)(87,119)(88,118)(89,117)(90,116)(91,115)(92,114)(93,113)(94,140)(95,139)(96,138)(97,137)(98,136)(99,135)(100,134)(101,133)(102,132)(103,131)(104,130)(105,129)(106,128)(107,127)(108,126)(109,125)(110,124)(111,123)(112,122), (1,45,74,108)(2,32,75,95)(3,47,76,110)(4,34,77,97)(5,49,78,112)(6,36,79,99)(7,51,80,86)(8,38,81,101)(9,53,82,88)(10,40,83,103)(11,55,84,90)(12,42,57,105)(13,29,58,92)(14,44,59,107)(15,31,60,94)(16,46,61,109)(17,33,62,96)(18,48,63,111)(19,35,64,98)(20,50,65,85)(21,37,66,100)(22,52,67,87)(23,39,68,102)(24,54,69,89)(25,41,70,104)(26,56,71,91)(27,43,72,106)(28,30,73,93)(113,173,155,222)(114,188,156,209)(115,175,157,224)(116,190,158,211)(117,177,159,198)(118,192,160,213)(119,179,161,200)(120,194,162,215)(121,181,163,202)(122,196,164,217)(123,183,165,204)(124,170,166,219)(125,185,167,206)(126,172,168,221)(127,187,141,208)(128,174,142,223)(129,189,143,210)(130,176,144,197)(131,191,145,212)(132,178,146,199)(133,193,147,214)(134,180,148,201)(135,195,149,216)(136,182,150,203)(137,169,151,218)(138,184,152,205)(139,171,153,220)(140,186,154,207), (1,45)(2,44)(3,43)(4,42)(5,41)(6,40)(7,39)(8,38)(9,37)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,56)(19,55)(20,54)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47)(28,46)(57,97)(58,96)(59,95)(60,94)(61,93)(62,92)(63,91)(64,90)(65,89)(66,88)(67,87)(68,86)(69,85)(70,112)(71,111)(72,110)(73,109)(74,108)(75,107)(76,106)(77,105)(78,104)(79,103)(80,102)(81,101)(82,100)(83,99)(84,98)(113,208)(114,207)(115,206)(116,205)(117,204)(118,203)(119,202)(120,201)(121,200)(122,199)(123,198)(124,197)(125,224)(126,223)(127,222)(128,221)(129,220)(130,219)(131,218)(132,217)(133,216)(134,215)(135,214)(136,213)(137,212)(138,211)(139,210)(140,209)(141,173)(142,172)(143,171)(144,170)(145,169)(146,196)(147,195)(148,194)(149,193)(150,192)(151,191)(152,190)(153,189)(154,188)(155,187)(156,186)(157,185)(158,184)(159,183)(160,182)(161,181)(162,180)(163,179)(164,178)(165,177)(166,176)(167,175)(168,174)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,193)(2,192)(3,191)(4,190)(5,189)(6,188)(7,187)(8,186)(9,185)(10,184)(11,183)(12,182)(13,181)(14,180)(15,179)(16,178)(17,177)(18,176)(19,175)(20,174)(21,173)(22,172)(23,171)(24,170)(25,169)(26,196)(27,195)(28,194)(29,156)(30,155)(31,154)(32,153)(33,152)(34,151)(35,150)(36,149)(37,148)(38,147)(39,146)(40,145)(41,144)(42,143)(43,142)(44,141)(45,168)(46,167)(47,166)(48,165)(49,164)(50,163)(51,162)(52,161)(53,160)(54,159)(55,158)(56,157)(57,203)(58,202)(59,201)(60,200)(61,199)(62,198)(63,197)(64,224)(65,223)(66,222)(67,221)(68,220)(69,219)(70,218)(71,217)(72,216)(73,215)(74,214)(75,213)(76,212)(77,211)(78,210)(79,209)(80,208)(81,207)(82,206)(83,205)(84,204)(85,121)(86,120)(87,119)(88,118)(89,117)(90,116)(91,115)(92,114)(93,113)(94,140)(95,139)(96,138)(97,137)(98,136)(99,135)(100,134)(101,133)(102,132)(103,131)(104,130)(105,129)(106,128)(107,127)(108,126)(109,125)(110,124)(111,123)(112,122), (1,45,74,108)(2,32,75,95)(3,47,76,110)(4,34,77,97)(5,49,78,112)(6,36,79,99)(7,51,80,86)(8,38,81,101)(9,53,82,88)(10,40,83,103)(11,55,84,90)(12,42,57,105)(13,29,58,92)(14,44,59,107)(15,31,60,94)(16,46,61,109)(17,33,62,96)(18,48,63,111)(19,35,64,98)(20,50,65,85)(21,37,66,100)(22,52,67,87)(23,39,68,102)(24,54,69,89)(25,41,70,104)(26,56,71,91)(27,43,72,106)(28,30,73,93)(113,173,155,222)(114,188,156,209)(115,175,157,224)(116,190,158,211)(117,177,159,198)(118,192,160,213)(119,179,161,200)(120,194,162,215)(121,181,163,202)(122,196,164,217)(123,183,165,204)(124,170,166,219)(125,185,167,206)(126,172,168,221)(127,187,141,208)(128,174,142,223)(129,189,143,210)(130,176,144,197)(131,191,145,212)(132,178,146,199)(133,193,147,214)(134,180,148,201)(135,195,149,216)(136,182,150,203)(137,169,151,218)(138,184,152,205)(139,171,153,220)(140,186,154,207), (1,45)(2,44)(3,43)(4,42)(5,41)(6,40)(7,39)(8,38)(9,37)(10,36)(11,35)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(18,56)(19,55)(20,54)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47)(28,46)(57,97)(58,96)(59,95)(60,94)(61,93)(62,92)(63,91)(64,90)(65,89)(66,88)(67,87)(68,86)(69,85)(70,112)(71,111)(72,110)(73,109)(74,108)(75,107)(76,106)(77,105)(78,104)(79,103)(80,102)(81,101)(82,100)(83,99)(84,98)(113,208)(114,207)(115,206)(116,205)(117,204)(118,203)(119,202)(120,201)(121,200)(122,199)(123,198)(124,197)(125,224)(126,223)(127,222)(128,221)(129,220)(130,219)(131,218)(132,217)(133,216)(134,215)(135,214)(136,213)(137,212)(138,211)(139,210)(140,209)(141,173)(142,172)(143,171)(144,170)(145,169)(146,196)(147,195)(148,194)(149,193)(150,192)(151,191)(152,190)(153,189)(154,188)(155,187)(156,186)(157,185)(158,184)(159,183)(160,182)(161,181)(162,180)(163,179)(164,178)(165,177)(166,176)(167,175)(168,174) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,193),(2,192),(3,191),(4,190),(5,189),(6,188),(7,187),(8,186),(9,185),(10,184),(11,183),(12,182),(13,181),(14,180),(15,179),(16,178),(17,177),(18,176),(19,175),(20,174),(21,173),(22,172),(23,171),(24,170),(25,169),(26,196),(27,195),(28,194),(29,156),(30,155),(31,154),(32,153),(33,152),(34,151),(35,150),(36,149),(37,148),(38,147),(39,146),(40,145),(41,144),(42,143),(43,142),(44,141),(45,168),(46,167),(47,166),(48,165),(49,164),(50,163),(51,162),(52,161),(53,160),(54,159),(55,158),(56,157),(57,203),(58,202),(59,201),(60,200),(61,199),(62,198),(63,197),(64,224),(65,223),(66,222),(67,221),(68,220),(69,219),(70,218),(71,217),(72,216),(73,215),(74,214),(75,213),(76,212),(77,211),(78,210),(79,209),(80,208),(81,207),(82,206),(83,205),(84,204),(85,121),(86,120),(87,119),(88,118),(89,117),(90,116),(91,115),(92,114),(93,113),(94,140),(95,139),(96,138),(97,137),(98,136),(99,135),(100,134),(101,133),(102,132),(103,131),(104,130),(105,129),(106,128),(107,127),(108,126),(109,125),(110,124),(111,123),(112,122)], [(1,45,74,108),(2,32,75,95),(3,47,76,110),(4,34,77,97),(5,49,78,112),(6,36,79,99),(7,51,80,86),(8,38,81,101),(9,53,82,88),(10,40,83,103),(11,55,84,90),(12,42,57,105),(13,29,58,92),(14,44,59,107),(15,31,60,94),(16,46,61,109),(17,33,62,96),(18,48,63,111),(19,35,64,98),(20,50,65,85),(21,37,66,100),(22,52,67,87),(23,39,68,102),(24,54,69,89),(25,41,70,104),(26,56,71,91),(27,43,72,106),(28,30,73,93),(113,173,155,222),(114,188,156,209),(115,175,157,224),(116,190,158,211),(117,177,159,198),(118,192,160,213),(119,179,161,200),(120,194,162,215),(121,181,163,202),(122,196,164,217),(123,183,165,204),(124,170,166,219),(125,185,167,206),(126,172,168,221),(127,187,141,208),(128,174,142,223),(129,189,143,210),(130,176,144,197),(131,191,145,212),(132,178,146,199),(133,193,147,214),(134,180,148,201),(135,195,149,216),(136,182,150,203),(137,169,151,218),(138,184,152,205),(139,171,153,220),(140,186,154,207)], [(1,45),(2,44),(3,43),(4,42),(5,41),(6,40),(7,39),(8,38),(9,37),(10,36),(11,35),(12,34),(13,33),(14,32),(15,31),(16,30),(17,29),(18,56),(19,55),(20,54),(21,53),(22,52),(23,51),(24,50),(25,49),(26,48),(27,47),(28,46),(57,97),(58,96),(59,95),(60,94),(61,93),(62,92),(63,91),(64,90),(65,89),(66,88),(67,87),(68,86),(69,85),(70,112),(71,111),(72,110),(73,109),(74,108),(75,107),(76,106),(77,105),(78,104),(79,103),(80,102),(81,101),(82,100),(83,99),(84,98),(113,208),(114,207),(115,206),(116,205),(117,204),(118,203),(119,202),(120,201),(121,200),(122,199),(123,198),(124,197),(125,224),(126,223),(127,222),(128,221),(129,220),(130,219),(131,218),(132,217),(133,216),(134,215),(135,214),(136,213),(137,212),(138,211),(139,210),(140,209),(141,173),(142,172),(143,171),(144,170),(145,169),(146,196),(147,195),(148,194),(149,193),(150,192),(151,191),(152,190),(153,189),(154,188),(155,187),(156,186),(157,185),(158,184),(159,183),(160,182),(161,181),(162,180),(163,179),(164,178),(165,177),(166,176),(167,175),(168,174)]])
61 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 14A | ··· | 14I | 28A | ··· | 28F | 28G | ··· | 28R | 56A | ··· | 56L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 1 | 1 | 28 | 28 | 28 | 56 | 2 | 2 | 4 | 4 | 8 | 14 | 14 | 2 | 2 | 2 | 4 | 4 | 28 | 28 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
61 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D4 | D7 | D14 | D14 | D14 | C4○D8 | D28 | C8⋊C22 | D4×D7 | D4×D7 | D56⋊C2 | Q8.D14 |
kernel | D28⋊4D4 | C14.D8 | D14⋊C8 | C7×Q8⋊C4 | C4⋊D28 | C2×D56 | C2×Q8⋊D7 | C2×Q8⋊2D7 | D28 | C2×Dic7 | C7×Q8 | C22×D7 | Q8⋊C4 | C4⋊C4 | C2×C8 | C2×Q8 | C14 | Q8 | C14 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 3 | 3 | 3 | 4 | 12 | 1 | 3 | 3 | 6 | 6 |
Matrix representation of D28⋊4D4 ►in GL4(𝔽113) generated by
43 | 9 | 0 | 0 |
95 | 104 | 0 | 0 |
0 | 0 | 98 | 0 |
0 | 0 | 98 | 15 |
8 | 33 | 0 | 0 |
70 | 105 | 0 | 0 |
0 | 0 | 15 | 83 |
0 | 0 | 15 | 98 |
47 | 38 | 0 | 0 |
37 | 66 | 0 | 0 |
0 | 0 | 44 | 25 |
0 | 0 | 31 | 69 |
94 | 81 | 0 | 0 |
96 | 19 | 0 | 0 |
0 | 0 | 69 | 88 |
0 | 0 | 100 | 44 |
G:=sub<GL(4,GF(113))| [43,95,0,0,9,104,0,0,0,0,98,98,0,0,0,15],[8,70,0,0,33,105,0,0,0,0,15,15,0,0,83,98],[47,37,0,0,38,66,0,0,0,0,44,31,0,0,25,69],[94,96,0,0,81,19,0,0,0,0,69,100,0,0,88,44] >;
D28⋊4D4 in GAP, Magma, Sage, TeX
D_{28}\rtimes_4D_4
% in TeX
G:=Group("D28:4D4");
// GroupNames label
G:=SmallGroup(448,345);
// by ID
G=gap.SmallGroup(448,345);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,120,758,135,184,570,297,136,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^15,c*b*c^-1=a^21*b,d*b*d=a^19*b,d*c*d=c^-1>;
// generators/relations