Copied to
clipboard

G = D28.6D4order 448 = 26·7

6th non-split extension by D28 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D28.6D4, Dic14.6D4, M4(2).5D14, C7⋊C8.26D4, D28.C47C2, C28.99(C2×D4), C4.152(D4×D7), (C2×Q8).7D14, C8⋊D14.1C2, C4.10D43D7, C72(D4.3D4), C28.46D48C2, C28.C231C2, C28.53D43C2, (C2×C28).11C23, C4○D28.7C22, (Q8×C14).9C22, C14.11(C4⋊D4), (C2×D28).42C22, C2.14(D14⋊D4), C4.Dic7.6C22, C22.15(C4○D28), (C7×M4(2)).14C22, (C2×Q8⋊D7)⋊1C2, (C2×C7⋊C8).3C22, (C7×C4.10D4)⋊1C2, (C2×C4).11(C22×D7), (C2×C14).32(C4○D4), SmallGroup(448,288)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D28.6D4
C1C7C14C28C2×C28C4○D28D28.C4 — D28.6D4
C7C14C2×C28 — D28.6D4
C1C2C2×C4C4.10D4

Generators and relations for D28.6D4
 G = < a,b,c,d | a28=b2=1, c4=a14, d2=a7, bab=a-1, cac-1=a15, ad=da, cbc-1=a14b, dbd-1=a7b, dcd-1=a7c3 >

Subgroups: 620 in 104 conjugacy classes, 35 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C2×C8, M4(2), M4(2), D8, SD16, Q16, C2×D4, C2×Q8, C4○D4, Dic7, C28, C28, D14, C2×C14, C4.D4, C4.10D4, C8.C4, C8○D4, C2×SD16, C8⋊C22, C8.C22, C7⋊C8, C7⋊C8, C56, Dic14, C4×D7, D28, D28, C7⋊D4, C2×C28, C2×C28, C7×Q8, C22×D7, D4.3D4, C8×D7, C8⋊D7, C56⋊C2, D56, C2×C7⋊C8, C4.Dic7, Q8⋊D7, C7⋊Q16, C7×M4(2), C2×D28, C4○D28, Q8×C14, C28.53D4, C28.46D4, C7×C4.10D4, D28.C4, C8⋊D14, C2×Q8⋊D7, C28.C23, D28.6D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, C22×D7, D4.3D4, C4○D28, D4×D7, D14⋊D4, D28.6D4

Smallest permutation representation of D28.6D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 96)(2 95)(3 94)(4 93)(5 92)(6 91)(7 90)(8 89)(9 88)(10 87)(11 86)(12 85)(13 112)(14 111)(15 110)(16 109)(17 108)(18 107)(19 106)(20 105)(21 104)(22 103)(23 102)(24 101)(25 100)(26 99)(27 98)(28 97)(29 83)(30 82)(31 81)(32 80)(33 79)(34 78)(35 77)(36 76)(37 75)(38 74)(39 73)(40 72)(41 71)(42 70)(43 69)(44 68)(45 67)(46 66)(47 65)(48 64)(49 63)(50 62)(51 61)(52 60)(53 59)(54 58)(55 57)(56 84)
(1 63 22 70 15 77 8 84)(2 78 23 57 16 64 9 71)(3 65 24 72 17 79 10 58)(4 80 25 59 18 66 11 73)(5 67 26 74 19 81 12 60)(6 82 27 61 20 68 13 75)(7 69 28 76 21 83 14 62)(29 97 50 104 43 111 36 90)(30 112 51 91 44 98 37 105)(31 99 52 106 45 85 38 92)(32 86 53 93 46 100 39 107)(33 101 54 108 47 87 40 94)(34 88 55 95 48 102 41 109)(35 103 56 110 49 89 42 96)
(1 104 8 111 15 90 22 97)(2 105 9 112 16 91 23 98)(3 106 10 85 17 92 24 99)(4 107 11 86 18 93 25 100)(5 108 12 87 19 94 26 101)(6 109 13 88 20 95 27 102)(7 110 14 89 21 96 28 103)(29 84 36 63 43 70 50 77)(30 57 37 64 44 71 51 78)(31 58 38 65 45 72 52 79)(32 59 39 66 46 73 53 80)(33 60 40 67 47 74 54 81)(34 61 41 68 48 75 55 82)(35 62 42 69 49 76 56 83)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,96)(2,95)(3,94)(4,93)(5,92)(6,91)(7,90)(8,89)(9,88)(10,87)(11,86)(12,85)(13,112)(14,111)(15,110)(16,109)(17,108)(18,107)(19,106)(20,105)(21,104)(22,103)(23,102)(24,101)(25,100)(26,99)(27,98)(28,97)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(56,84), (1,63,22,70,15,77,8,84)(2,78,23,57,16,64,9,71)(3,65,24,72,17,79,10,58)(4,80,25,59,18,66,11,73)(5,67,26,74,19,81,12,60)(6,82,27,61,20,68,13,75)(7,69,28,76,21,83,14,62)(29,97,50,104,43,111,36,90)(30,112,51,91,44,98,37,105)(31,99,52,106,45,85,38,92)(32,86,53,93,46,100,39,107)(33,101,54,108,47,87,40,94)(34,88,55,95,48,102,41,109)(35,103,56,110,49,89,42,96), (1,104,8,111,15,90,22,97)(2,105,9,112,16,91,23,98)(3,106,10,85,17,92,24,99)(4,107,11,86,18,93,25,100)(5,108,12,87,19,94,26,101)(6,109,13,88,20,95,27,102)(7,110,14,89,21,96,28,103)(29,84,36,63,43,70,50,77)(30,57,37,64,44,71,51,78)(31,58,38,65,45,72,52,79)(32,59,39,66,46,73,53,80)(33,60,40,67,47,74,54,81)(34,61,41,68,48,75,55,82)(35,62,42,69,49,76,56,83)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,96)(2,95)(3,94)(4,93)(5,92)(6,91)(7,90)(8,89)(9,88)(10,87)(11,86)(12,85)(13,112)(14,111)(15,110)(16,109)(17,108)(18,107)(19,106)(20,105)(21,104)(22,103)(23,102)(24,101)(25,100)(26,99)(27,98)(28,97)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(56,84), (1,63,22,70,15,77,8,84)(2,78,23,57,16,64,9,71)(3,65,24,72,17,79,10,58)(4,80,25,59,18,66,11,73)(5,67,26,74,19,81,12,60)(6,82,27,61,20,68,13,75)(7,69,28,76,21,83,14,62)(29,97,50,104,43,111,36,90)(30,112,51,91,44,98,37,105)(31,99,52,106,45,85,38,92)(32,86,53,93,46,100,39,107)(33,101,54,108,47,87,40,94)(34,88,55,95,48,102,41,109)(35,103,56,110,49,89,42,96), (1,104,8,111,15,90,22,97)(2,105,9,112,16,91,23,98)(3,106,10,85,17,92,24,99)(4,107,11,86,18,93,25,100)(5,108,12,87,19,94,26,101)(6,109,13,88,20,95,27,102)(7,110,14,89,21,96,28,103)(29,84,36,63,43,70,50,77)(30,57,37,64,44,71,51,78)(31,58,38,65,45,72,52,79)(32,59,39,66,46,73,53,80)(33,60,40,67,47,74,54,81)(34,61,41,68,48,75,55,82)(35,62,42,69,49,76,56,83) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,96),(2,95),(3,94),(4,93),(5,92),(6,91),(7,90),(8,89),(9,88),(10,87),(11,86),(12,85),(13,112),(14,111),(15,110),(16,109),(17,108),(18,107),(19,106),(20,105),(21,104),(22,103),(23,102),(24,101),(25,100),(26,99),(27,98),(28,97),(29,83),(30,82),(31,81),(32,80),(33,79),(34,78),(35,77),(36,76),(37,75),(38,74),(39,73),(40,72),(41,71),(42,70),(43,69),(44,68),(45,67),(46,66),(47,65),(48,64),(49,63),(50,62),(51,61),(52,60),(53,59),(54,58),(55,57),(56,84)], [(1,63,22,70,15,77,8,84),(2,78,23,57,16,64,9,71),(3,65,24,72,17,79,10,58),(4,80,25,59,18,66,11,73),(5,67,26,74,19,81,12,60),(6,82,27,61,20,68,13,75),(7,69,28,76,21,83,14,62),(29,97,50,104,43,111,36,90),(30,112,51,91,44,98,37,105),(31,99,52,106,45,85,38,92),(32,86,53,93,46,100,39,107),(33,101,54,108,47,87,40,94),(34,88,55,95,48,102,41,109),(35,103,56,110,49,89,42,96)], [(1,104,8,111,15,90,22,97),(2,105,9,112,16,91,23,98),(3,106,10,85,17,92,24,99),(4,107,11,86,18,93,25,100),(5,108,12,87,19,94,26,101),(6,109,13,88,20,95,27,102),(7,110,14,89,21,96,28,103),(29,84,36,63,43,70,50,77),(30,57,37,64,44,71,51,78),(31,58,38,65,45,72,52,79),(32,59,39,66,46,73,53,80),(33,60,40,67,47,74,54,81),(34,61,41,68,48,75,55,82),(35,62,42,69,49,76,56,83)]])

49 conjugacy classes

class 1 2A2B2C2D4A4B4C4D7A7B7C8A8B8C8D8E8F8G14A14B14C14D14E14F28A···28F28G···28L56A···56L
order122224444777888888814141414141428···2828···2856···56
size112285622828222448141428562224444···48···88···8

49 irreducible representations

dim1111111122222222448
type++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D7C4○D4D14D14C4○D28D4.3D4D4×D7D28.6D4
kernelD28.6D4C28.53D4C28.46D4C7×C4.10D4D28.C4C8⋊D14C2×Q8⋊D7C28.C23C7⋊C8Dic14D28C4.10D4C2×C14M4(2)C2×Q8C22C7C4C1
# reps11111111211326312263

Matrix representation of D28.6D4 in GL6(𝔽113)

112890000
24100000
0018700
008711200
00626811277
008977441
,
100000
891120000
00023087
0013669111
0096214499
0053844833
,
11200000
01120000
00169690
00023087
00010511226
0013090
,
11200000
01120000
00871041426
0011277442
009859514
0086296580

G:=sub<GL(6,GF(113))| [112,24,0,0,0,0,89,10,0,0,0,0,0,0,1,87,62,89,0,0,87,112,68,77,0,0,0,0,112,44,0,0,0,0,77,1],[1,89,0,0,0,0,0,112,0,0,0,0,0,0,0,1,96,53,0,0,23,36,21,84,0,0,0,69,44,48,0,0,87,111,99,33],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,1,0,0,69,23,105,3,0,0,69,0,112,0,0,0,0,87,26,90],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,87,112,98,86,0,0,104,77,5,29,0,0,14,44,95,65,0,0,26,2,14,80] >;

D28.6D4 in GAP, Magma, Sage, TeX

D_{28}._6D_4
% in TeX

G:=Group("D28.6D4");
// GroupNames label

G:=SmallGroup(448,288);
// by ID

G=gap.SmallGroup(448,288);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,64,590,219,184,297,136,1684,851,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=1,c^4=a^14,d^2=a^7,b*a*b=a^-1,c*a*c^-1=a^15,a*d=d*a,c*b*c^-1=a^14*b,d*b*d^-1=a^7*b,d*c*d^-1=a^7*c^3>;
// generators/relations

׿
×
𝔽