Extensions 1→N→G→Q→1 with N=C4×C8 and Q=D7

Direct product G=N×Q with N=C4×C8 and Q=D7
dρLabelID
D7×C4×C8224D7xC4xC8448,218

Semidirect products G=N:Q with N=C4×C8 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C4×C8)⋊1D7 = C4.17D56φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):1D7448,16
(C4×C8)⋊2D7 = C42.282D14φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):2D7448,219
(C4×C8)⋊3D7 = C8×D28φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):3D7448,220
(C4×C8)⋊4D7 = C42.243D14φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):4D7448,224
(C4×C8)⋊5D7 = C4.5D56φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):5D7448,228
(C4×C8)⋊6D7 = C42.264D14φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):6D7448,231
(C4×C8)⋊7D7 = C4×D56φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):7D7448,226
(C4×C8)⋊8D7 = C284D8φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):8D7448,229
(C4×C8)⋊9D7 = C8.8D28φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):9D7448,230
(C4×C8)⋊10D7 = D5611C4φ: D7/C7C2 ⊆ Aut C4×C81122(C4xC8):10D7448,234
(C4×C8)⋊11D7 = C4×C56⋊C2φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):11D7448,225
(C4×C8)⋊12D7 = C85D28φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):12D7448,227
(C4×C8)⋊13D7 = C4×C8⋊D7φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):13D7448,221
(C4×C8)⋊14D7 = C86D28φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):14D7448,222
(C4×C8)⋊15D7 = D14.C42φ: D7/C7C2 ⊆ Aut C4×C8224(C4xC8):15D7448,223

Non-split extensions G=N.Q with N=C4×C8 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C4×C8).1D7 = C42.279D14φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).1D7448,11
(C4×C8).2D7 = C4.8Dic28φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).2D7448,13
(C4×C8).3D7 = C28⋊C16φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).3D7448,19
(C4×C8).4D7 = C8×Dic14φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).4D7448,212
(C4×C8).5D7 = C28.14Q16φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).5D7448,215
(C4×C8).6D7 = C561C8φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).6D7448,15
(C4×C8).7D7 = C568Q8φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).7D7448,216
(C4×C8).8D7 = C4×Dic28φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).8D7448,232
(C4×C8).9D7 = C284Q16φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).9D7448,233
(C4×C8).10D7 = C56.13Q8φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).10D7448,217
(C4×C8).11D7 = C56.16Q8φ: D7/C7C2 ⊆ Aut C4×C81122(C4xC8).11D7448,20
(C4×C8).12D7 = C562C8φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).12D7448,14
(C4×C8).13D7 = C569Q8φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).13D7448,214
(C4×C8).14D7 = C56⋊C8φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).14D7448,12
(C4×C8).15D7 = C56.C8φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).15D7448,18
(C4×C8).16D7 = C5611Q8φ: D7/C7C2 ⊆ Aut C4×C8448(C4xC8).16D7448,213
(C4×C8).17D7 = C8×C7⋊C8central extension (φ=1)448(C4xC8).17D7448,10
(C4×C8).18D7 = C4×C7⋊C16central extension (φ=1)448(C4xC8).18D7448,17

׿
×
𝔽