Copied to
clipboard

G = D5611C4order 448 = 26·7

The semidirect product of D56 and C4 acting through Inn(D56)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5611C4, C8.14D28, C56.67D4, Dic2811C4, C42.267D14, (C4×C8)⋊10D7, C71(C8○D8), (C4×C56)⋊15C2, C56⋊C27C4, C8.22(C4×D7), C14.9(C4×D4), C56.52(C2×C4), C4.76(C2×D28), C2.12(C4×D28), D28.13(C2×C4), (C2×C8).324D14, C28.296(C2×D4), C56.C417C2, Dic14⋊C415C2, D567C2.10C2, D28.2C411C2, (C4×C28).328C22, C28.104(C22×C4), (C2×C28).791C23, (C2×C56).407C22, Dic14.13(C2×C4), C4○D28.35C22, C22.20(C4○D28), C4.Dic7.33C22, C4.62(C2×C4×D7), (C2×C14).62(C4○D4), (C2×C4).672(C22×D7), SmallGroup(448,234)

Series: Derived Chief Lower central Upper central

C1C28 — D5611C4
C1C7C14C28C2×C28C4○D28D567C2 — D5611C4
C7C14C28 — D5611C4
C1C8C2×C8C4×C8

Generators and relations for D5611C4
 G = < a,b,c | a56=b2=c4=1, bab=a-1, ac=ca, cbc-1=a42b >

Subgroups: 484 in 106 conjugacy classes, 47 normal (33 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, Q8, D7, C14, C14, C42, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C4○D4, Dic7, C28, C28, D14, C2×C14, C4×C8, C4≀C2, C8.C4, C8○D4, C4○D8, C7⋊C8, C56, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C2×C28, C8○D8, C8×D7, C8⋊D7, C56⋊C2, D56, Dic28, C4.Dic7, C4×C28, C2×C56, C4○D28, Dic14⋊C4, C56.C4, C4×C56, D28.2C4, D567C2, D5611C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, D28, C22×D7, C8○D8, C2×C4×D7, C2×D28, C4○D28, C4×D28, D5611C4

Smallest permutation representation of D5611C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 100)(2 99)(3 98)(4 97)(5 96)(6 95)(7 94)(8 93)(9 92)(10 91)(11 90)(12 89)(13 88)(14 87)(15 86)(16 85)(17 84)(18 83)(19 82)(20 81)(21 80)(22 79)(23 78)(24 77)(25 76)(26 75)(27 74)(28 73)(29 72)(30 71)(31 70)(32 69)(33 68)(34 67)(35 66)(36 65)(37 64)(38 63)(39 62)(40 61)(41 60)(42 59)(43 58)(44 57)(45 112)(46 111)(47 110)(48 109)(49 108)(50 107)(51 106)(52 105)(53 104)(54 103)(55 102)(56 101)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 71 85 99)(58 72 86 100)(59 73 87 101)(60 74 88 102)(61 75 89 103)(62 76 90 104)(63 77 91 105)(64 78 92 106)(65 79 93 107)(66 80 94 108)(67 81 95 109)(68 82 96 110)(69 83 97 111)(70 84 98 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,100)(2,99)(3,98)(4,97)(5,96)(6,95)(7,94)(8,93)(9,92)(10,91)(11,90)(12,89)(13,88)(14,87)(15,86)(16,85)(17,84)(18,83)(19,82)(20,81)(21,80)(22,79)(23,78)(24,77)(25,76)(26,75)(27,74)(28,73)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)(37,64)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,112)(46,111)(47,110)(48,109)(49,108)(50,107)(51,106)(52,105)(53,104)(54,103)(55,102)(56,101), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,71,85,99)(58,72,86,100)(59,73,87,101)(60,74,88,102)(61,75,89,103)(62,76,90,104)(63,77,91,105)(64,78,92,106)(65,79,93,107)(66,80,94,108)(67,81,95,109)(68,82,96,110)(69,83,97,111)(70,84,98,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,100)(2,99)(3,98)(4,97)(5,96)(6,95)(7,94)(8,93)(9,92)(10,91)(11,90)(12,89)(13,88)(14,87)(15,86)(16,85)(17,84)(18,83)(19,82)(20,81)(21,80)(22,79)(23,78)(24,77)(25,76)(26,75)(27,74)(28,73)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)(37,64)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,112)(46,111)(47,110)(48,109)(49,108)(50,107)(51,106)(52,105)(53,104)(54,103)(55,102)(56,101), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,71,85,99)(58,72,86,100)(59,73,87,101)(60,74,88,102)(61,75,89,103)(62,76,90,104)(63,77,91,105)(64,78,92,106)(65,79,93,107)(66,80,94,108)(67,81,95,109)(68,82,96,110)(69,83,97,111)(70,84,98,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,100),(2,99),(3,98),(4,97),(5,96),(6,95),(7,94),(8,93),(9,92),(10,91),(11,90),(12,89),(13,88),(14,87),(15,86),(16,85),(17,84),(18,83),(19,82),(20,81),(21,80),(22,79),(23,78),(24,77),(25,76),(26,75),(27,74),(28,73),(29,72),(30,71),(31,70),(32,69),(33,68),(34,67),(35,66),(36,65),(37,64),(38,63),(39,62),(40,61),(41,60),(42,59),(43,58),(44,57),(45,112),(46,111),(47,110),(48,109),(49,108),(50,107),(51,106),(52,105),(53,104),(54,103),(55,102),(56,101)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,71,85,99),(58,72,86,100),(59,73,87,101),(60,74,88,102),(61,75,89,103),(62,76,90,104),(63,77,91,105),(64,78,92,106),(65,79,93,107),(66,80,94,108),(67,81,95,109),(68,82,96,110),(69,83,97,111),(70,84,98,112)]])

124 conjugacy classes

class 1 2A2B2C2D4A4B4C···4G4H4I7A7B7C8A8B8C8D8E···8J8K8L8M8N14A···14I28A···28AJ56A···56AV
order12222444···44477788888···8888814···1428···2856···56
size1122828112···2282822211112···2282828282···22···22···2

124 irreducible representations

dim1111111112222222222
type+++++++++++
imageC1C2C2C2C2C2C4C4C4D4D7C4○D4D14D14C4×D7D28C8○D8C4○D28D5611C4
kernelD5611C4Dic14⋊C4C56.C4C4×C56D28.2C4D567C2C56⋊C2D56Dic28C56C4×C8C2×C14C42C2×C8C8C8C7C22C1
# reps12112142223236121281248

Matrix representation of D5611C4 in GL2(𝔽113) generated by

1040
025
,
025
1040
,
1120
015
G:=sub<GL(2,GF(113))| [104,0,0,25],[0,104,25,0],[112,0,0,15] >;

D5611C4 in GAP, Magma, Sage, TeX

D_{56}\rtimes_{11}C_4
% in TeX

G:=Group("D56:11C4");
// GroupNames label

G:=SmallGroup(448,234);
// by ID

G=gap.SmallGroup(448,234);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,120,58,136,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=b^2=c^4=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^42*b>;
// generators/relations

׿
×
𝔽