Copied to
clipboard

G = D56:11C4order 448 = 26·7

The semidirect product of D56 and C4 acting through Inn(D56)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D56:11C4, C8.14D28, C56.67D4, Dic28:11C4, C42.267D14, (C4xC8):10D7, C7:1(C8oD8), (C4xC56):15C2, C56:C2:7C4, C8.22(C4xD7), C14.9(C4xD4), C56.52(C2xC4), C4.76(C2xD28), C2.12(C4xD28), D28.13(C2xC4), (C2xC8).324D14, C28.296(C2xD4), C56.C4:17C2, Dic14:C4:15C2, D56:7C2.10C2, D28.2C4:11C2, (C4xC28).328C22, C28.104(C22xC4), (C2xC28).791C23, (C2xC56).407C22, Dic14.13(C2xC4), C4oD28.35C22, C22.20(C4oD28), C4.Dic7.33C22, C4.62(C2xC4xD7), (C2xC14).62(C4oD4), (C2xC4).672(C22xD7), SmallGroup(448,234)

Series: Derived Chief Lower central Upper central

C1C28 — D56:11C4
C1C7C14C28C2xC28C4oD28D56:7C2 — D56:11C4
C7C14C28 — D56:11C4
C1C8C2xC8C4xC8

Generators and relations for D56:11C4
 G = < a,b,c | a56=b2=c4=1, bab=a-1, ac=ca, cbc-1=a42b >

Subgroups: 484 in 106 conjugacy classes, 47 normal (33 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2xC4, C2xC4, D4, Q8, D7, C14, C14, C42, C2xC8, C2xC8, M4(2), D8, SD16, Q16, C4oD4, Dic7, C28, C28, D14, C2xC14, C4xC8, C4wrC2, C8.C4, C8oD4, C4oD8, C7:C8, C56, Dic14, C4xD7, D28, C7:D4, C2xC28, C2xC28, C8oD8, C8xD7, C8:D7, C56:C2, D56, Dic28, C4.Dic7, C4xC28, C2xC56, C4oD28, Dic14:C4, C56.C4, C4xC56, D28.2C4, D56:7C2, D56:11C4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, D7, C22xC4, C2xD4, C4oD4, D14, C4xD4, C4xD7, D28, C22xD7, C8oD8, C2xC4xD7, C2xD28, C4oD28, C4xD28, D56:11C4

Smallest permutation representation of D56:11C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 100)(2 99)(3 98)(4 97)(5 96)(6 95)(7 94)(8 93)(9 92)(10 91)(11 90)(12 89)(13 88)(14 87)(15 86)(16 85)(17 84)(18 83)(19 82)(20 81)(21 80)(22 79)(23 78)(24 77)(25 76)(26 75)(27 74)(28 73)(29 72)(30 71)(31 70)(32 69)(33 68)(34 67)(35 66)(36 65)(37 64)(38 63)(39 62)(40 61)(41 60)(42 59)(43 58)(44 57)(45 112)(46 111)(47 110)(48 109)(49 108)(50 107)(51 106)(52 105)(53 104)(54 103)(55 102)(56 101)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 71 85 99)(58 72 86 100)(59 73 87 101)(60 74 88 102)(61 75 89 103)(62 76 90 104)(63 77 91 105)(64 78 92 106)(65 79 93 107)(66 80 94 108)(67 81 95 109)(68 82 96 110)(69 83 97 111)(70 84 98 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,100)(2,99)(3,98)(4,97)(5,96)(6,95)(7,94)(8,93)(9,92)(10,91)(11,90)(12,89)(13,88)(14,87)(15,86)(16,85)(17,84)(18,83)(19,82)(20,81)(21,80)(22,79)(23,78)(24,77)(25,76)(26,75)(27,74)(28,73)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)(37,64)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,112)(46,111)(47,110)(48,109)(49,108)(50,107)(51,106)(52,105)(53,104)(54,103)(55,102)(56,101), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,71,85,99)(58,72,86,100)(59,73,87,101)(60,74,88,102)(61,75,89,103)(62,76,90,104)(63,77,91,105)(64,78,92,106)(65,79,93,107)(66,80,94,108)(67,81,95,109)(68,82,96,110)(69,83,97,111)(70,84,98,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,100)(2,99)(3,98)(4,97)(5,96)(6,95)(7,94)(8,93)(9,92)(10,91)(11,90)(12,89)(13,88)(14,87)(15,86)(16,85)(17,84)(18,83)(19,82)(20,81)(21,80)(22,79)(23,78)(24,77)(25,76)(26,75)(27,74)(28,73)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)(37,64)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,112)(46,111)(47,110)(48,109)(49,108)(50,107)(51,106)(52,105)(53,104)(54,103)(55,102)(56,101), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,71,85,99)(58,72,86,100)(59,73,87,101)(60,74,88,102)(61,75,89,103)(62,76,90,104)(63,77,91,105)(64,78,92,106)(65,79,93,107)(66,80,94,108)(67,81,95,109)(68,82,96,110)(69,83,97,111)(70,84,98,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,100),(2,99),(3,98),(4,97),(5,96),(6,95),(7,94),(8,93),(9,92),(10,91),(11,90),(12,89),(13,88),(14,87),(15,86),(16,85),(17,84),(18,83),(19,82),(20,81),(21,80),(22,79),(23,78),(24,77),(25,76),(26,75),(27,74),(28,73),(29,72),(30,71),(31,70),(32,69),(33,68),(34,67),(35,66),(36,65),(37,64),(38,63),(39,62),(40,61),(41,60),(42,59),(43,58),(44,57),(45,112),(46,111),(47,110),(48,109),(49,108),(50,107),(51,106),(52,105),(53,104),(54,103),(55,102),(56,101)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,71,85,99),(58,72,86,100),(59,73,87,101),(60,74,88,102),(61,75,89,103),(62,76,90,104),(63,77,91,105),(64,78,92,106),(65,79,93,107),(66,80,94,108),(67,81,95,109),(68,82,96,110),(69,83,97,111),(70,84,98,112)]])

124 conjugacy classes

class 1 2A2B2C2D4A4B4C···4G4H4I7A7B7C8A8B8C8D8E···8J8K8L8M8N14A···14I28A···28AJ56A···56AV
order12222444···44477788888···8888814···1428···2856···56
size1122828112···2282822211112···2282828282···22···22···2

124 irreducible representations

dim1111111112222222222
type+++++++++++
imageC1C2C2C2C2C2C4C4C4D4D7C4oD4D14D14C4xD7D28C8oD8C4oD28D56:11C4
kernelD56:11C4Dic14:C4C56.C4C4xC56D28.2C4D56:7C2C56:C2D56Dic28C56C4xC8C2xC14C42C2xC8C8C8C7C22C1
# reps12112142223236121281248

Matrix representation of D56:11C4 in GL2(F113) generated by

1040
025
,
025
1040
,
1120
015
G:=sub<GL(2,GF(113))| [104,0,0,25],[0,104,25,0],[112,0,0,15] >;

D56:11C4 in GAP, Magma, Sage, TeX

D_{56}\rtimes_{11}C_4
% in TeX

G:=Group("D56:11C4");
// GroupNames label

G:=SmallGroup(448,234);
// by ID

G=gap.SmallGroup(448,234);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,120,58,136,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=b^2=c^4=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^42*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<